
This is the specification of the standard mapping of the Enterprise JavaBeansTM architecture to
CORBA.

Please send technical comments on this specification to:

ejb-spec-comments@sun.com

Please send product and business questions to:

ejb-marketing@sun.com

Copyright 1999 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303

All rights reserved.

Sun Microsystems

Enterprise JavaBeansTM to CORBA
Mapping

microsystems

Sanjeev Krishnan

August 11, 1999
Version 1.1

Enterprise JavaBeans to CORBA

ed by
follow-
writ-
tion

eneral
this

ondi-

orld-
e es-

pre-

the
ereof,

es
istent

room
ple-

un in
ts all
ed by

hods to
s all

Sun
ereto;
un bi-
e, you
This
th the
you

ensor

irectory
istered

-

NOTICE

This Specification is protected by copyright and the information described herein may be protect
one or more U.S. patents, foreign patents, or pending applications. Except as provided under the
ing license, no part of this Specification may be reproduced in any form by any means without prior
ten authorization of Sun and its licensors, if any. Any use of this Specification and the informa
described herein will be governed by these terms and conditions and the Export Control and G
Terms as set forth in Sun’s website Legal Terms. By viewing, downloading or otherwise copying
Specification, you agree that you have read, understood, and will comply with all the terms and c
tions set forth herein.

Sun Microsystems, Inc. (“Sun”) hereby grants to you a fully-paid, nonexclusive, non-transferable, w
wide, limited license (without the right to sublicense) under Sun’s intellectual property rights that ar
sential to:

(A) use internally for reference purposes only the Specification for the sole purpose of developing

FCS JavaTM applications or applets that may interoperate with fully compliant implementations of
Specification as set forth herein; and (ii) reproduce and distribute the Specification or portions h

only as part of documentation for your pre-FCS JavaTM applications or applets for beta tesing purpos
only provided that you include a notice or other binding provisions that protect Sun’s interest cons
with the terms contained herein, and

(B) practice the Specification for the limited purpose of creating and distributing a pre-FCS clean
implementation of this Specification for beta testing purposes only that: (i) includes a complete im
mentation of the current version of this Specification for the optional components (as defined by S
the Specification) which you choose to implement without subsetting or supersetting; (ii) implemen
the interfaces and functionality of the required packages for such optional component(s) as defin
Sun, without subsetting or supersetting; (iii) does not add any additional packages, classes or met
the “java.*”, “sun.*”, “javax.*”, “com.sun” packages, subpackages or their equivalents; (iv) passe
test suites relating to the most recent published version of this Specification that is available from
six (6) months prior to any beta or pre-FCS release of the clean room implementation or upgrade th
(v) does not derive from any Sun source code or binary materials; and (vi) does not include any S
nary materials without an appropriate and separate license from Sun. Other than this limited licens
acquire no right, title or interest in or to this Specification or any other Sun intellectual property.
Specification contains the proprietary information of Sun and may only be used in accordance wi
license terms set forth therein. This license will terminate immediately without notice from Sun if
fail to comply with any provision of this license.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s lic
is granted hereunder.

Sun, Sun Microsystems, the Sun logo, Java, Enterprise JavaBeans, JDBC, Java Naming and D
Interface, “Write Once Run Anywhere”, Java ServerPages, JDK, JavaBeans are trademarks or reg
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THIS SPECIFICATION IS PROVIDED “AS IS” AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, IN
CLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
Sun Microsystems Inc. 2 August 11, 1999

Enterprise JavaBeans to CORBA

I-

com-

,

icable

-

e or
from
ith the

his li-
.227-

ALT

cies,
. To
is pro-

usive,
the
d test
PARTICULAR PURPOSE, OR NON-INFRINGEMENT; THAT THE CONTENTS OF THE SPECIF
CATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT ANY PRACTICE OR IMPLEMEN-
TATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any
mitment to release or implement any portion of this Specification in any product(s).

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHI-
CAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN;
THESE CHANGES WILL BE INCORPORATED IN NEW VERSIONS OF THE SPECIFICATION
IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS SPECIFICATION AT ANY TIME. Any use of such
changes in the Specification will be governed by the then current terms and conditions for the appl
version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES , INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU
NITIVE DAMAGES, HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY
USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold Sun harmless from any claims based: (i) your use of the Specification, (ii) from the us
distribution of your pre-FCS Java application, applet and/or clean room implementation, and (iii)
any claims that later versions or releases of any Specification furnished to you are incompatible w
Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to the restrictions set forth in t
cense and as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252
7013(c)(1)(ii)(Oct 1988), FAR 12.212(a) (1995), FAR 52.227-19 (June 1987), or FAR 52.227-14(
III) (June 1987), as applicable.

REPORT

As an Evaluation Posting of this Specification, you may wish to report any ambiguities, inconsisten
or inaccuracies you may find in connection with your evaluation of the Specification (“Feedback”)
the extent that you provide Sun with any Feedback, you hereby: (i) agree that that such Feedback
vided on a non-proprietary and non-confidential basis and (ii) grant to Sun a perpetual, non-excl
worldwide, fully paid-up, irrevocable license to incorporate, disclose, and use without limitation
Feedback for any purpose relating to the Specification and future versions, implementations, an
suites thereof.
Sun Microsystems Inc. 3 August 11, 1999

Enterprise JavaBeans to CORBA
Sun Microsystems Inc. 4 August 11, 1999

Enterprise JavaBeans to CORBA
Contents

1 Introduction 6

2 Goals 7

3 Mapping of Distribution 9

4 Mapping of Naming 12

5 Mapping of Transactions 14

6 Mapping of Security 16

AppendixA:References 17

AppendixB:Enterprise JavaBeans IDL 18
Sun Microsystems Inc. 5 August 11, 1999

Enterprise JavaBeans to CORBA

de-
tions
ecure.
server

tan-
tions

This

en-

EJB
[11]
ap-

plat-
e the
ucts.

e

ada
ping.
1 Introduction

Enterprise JavaBeansTM (EJB)[1] is a component architecture for development and
ployment of object-oriented distributed enterprise-level Java applications. Applica
written using Enterprise JavaBeans are scalable, transactional, and multi-user s
These applications can be written once, and then deployed on any EJB-enabled
platform.

We expect that many EJB servers will be based on the CORBA/IIOP [2] industry s
dards. To ensure interoperability among CORBA-based EJB server implementa
from multiple-vendors, we have defined a standard mapping of EJB to CORBA.
document corresponds to the EJB specification version 1.1.

This mapping must be used in conjunction with the relevant CORBA standards to
sure full on-the-wire interoperability.

The use of the EJB to CORBA mapping by an EJB Server is not a requirement for
1.1 compliance. A later release of the Java 2 Platform, Enterprise Edition (J2EE)
is likely to require that a J2EE platform vendor implement the EJB to CORBA m
ping.

1.1 Target Audience

The target audience for this specification are vendors of transaction processing
forms, vendors of enterprise application tools, and other vendors who want to us
CORBA/IIOP standard to provide support for Enterprise JavaBeans in their prod

1.2 Mapping Overview

The EJB to CORBA mapping is divided into four areas:

• Mapping of Distribution - defines the relationship between an Enterprise
JavaBean and a CORBA object, and the mapping of the Java RMI remot
interfaces defined in the EJB specification to OMG IDL.

• Mapping of Naming- specifies how CORBA’s COS Naming service is used to
locate EJBHome objects.

• Mapping of Transactions- defines the mapping of EJB transaction features to
the CORBA Object Transaction Service.

• Mapping of Security- defines the mapping of the security features in EJB to
CORBA security.

1.3 Acknowledgments

Rohit Garg authored version 1.0 of the EJB-to-CORBA mapping specification. Vl
Matena, Ken Cavanaugh and Vivek Nagar helped to define version 1.1 of the map
The input from several reviewers helped to improve this document.
Sun Microsystems Inc. 6 August 11, 1999

Enterprise JavaBeans to CORBA

y

rd

rise
cated

en-
2 Goals

The primary goals of this specification are:

• define “on-the-wire” interoperability so that multiple CORBA based
implementations of EJB containers can interoperate over a network. This
includes sharing information between the naming, transactions and securit
services from different vendors.

• allow CORBA clients (written in any language supported by CORBA) to access
enterprise beans deployed in a CORBA based EJB server through standa
CORBA APIs.

For example, a CORBA client program can mix calls to CORBA objects and enterp
beans within the scope of a single transaction, even if the enterprise beans are lo
on multiple CORBA-based EJB servers provided by different vendors.

This mapping must be used in conjunction with the relevant CORBA standards to
sure full on-the-wire interoperability.

2.1 Types of CORBA Clients

There are two types of CORBA clients for an EJB server:

• EJB/CORBA Client - A Java client that uses the EJB client-view APIs. This
type of client uses the Java Naming and Directory Interface (JNDI) to locate
objects, Java RMI over IIOP to invoke remote methods, and the
javax.transaction.UserTransactioninterface of the Java Transaction API (JTA)
to demarcate transaction boundaries. The use of CORBA IDL is implicit (i.e.

CORBA

EJB

CORBA

EJB

vendor 1 vendor 2

(client)

CORBA

EJB

vendor 3

(server 1) (server 2)

IIOP IIOP
Sun Microsystems Inc. 7 August 11, 1999

Enterprise JavaBeans to CORBA

/

s

EJB
the programmer writes only Java code and the corresponding CORBA IDL is
used implicitly by the runtime).
An enterprise bean running in a CORBA based EJB server is also an EJB
CORBA client to other enterprise beans.

• Plain CORBA Client - A client written in any language that uses a language
specific binding of the CORBA IDL. Such a client uses COS Naming APIs to
locate objects, CORBA IDL to invoke remote methods, and the CORBA Object
Transaction Service APIs to demarcate transactions. The use of CORBA IDL i
explicit (i.e. the programmer creates an IDL file and runs an IDL compiler to
generate stubs for a given language).

This mapping ensures that both types of clients interoperate with a CORBA-based
server by producing the same bits on the wire.

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans
client

Java IDL
client

CORBA
C++ client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOP
IIOP

IIOP

IIOP
Sun Microsystems Inc. 8 August 11, 1999

Enterprise JavaBeans to CORBA

JB1.1
se

e in-
This

Java
ct in-
how
licit

by the
rver.

during

ind
etypes

value
iron-
ffer-

lso re-

JB-
3 Mapping of Distribution

This chapter describes the mapping of interfaces and classes defined by the E
specification to CORBA IDL. Appendix B contains the complete IDL for Enterpri
JavaBeans.

Even though CORBA does not mandate using IIOP as the wire protocol for remot
vocations, IIOP is the de-facto standard wire protocol for most CORBA products.

specification requires that EJB/CORBA compliant implementations use IIOP1 as the
communication protocol.

3.1 Mapping Java Remote Interfaces to IDL

For each Enterprise JavaBean that is deployed in the EJB Server, there are two
RMI remote interfaces - the bean’s EJBHome interface, and the bean’s EJBObje
terface. The Java Language to IDL Mapping [7] specification describes precisely
these remote interfaces are mapped to IDL. This mapping to IDL is typically imp
when Java RMI over IIOP is used to invoke on enterprise beans.

3.1.1 Marking of transaction-enabled enterprise bean interfaces

For enterprise beans that may execute within the scope of a transaction started
client, the client’s transaction context must be implicitly propagated to the EJB se
The IDL interface for such enterprise beans must inherit fromCosTransactions::Trans-
actionalObject. The exact rules for this are specified in Section 5.1.

3.2 Mapping value objects to IDL

The EJB1.1 specification describes three Java interfaces that are passed by value
remote invocations:javax.ejb.Handle, javax.ejb.HomeHandleandjavax.ejb.EJBMeta-
Data. In addition, the Enumeration or Collection objects returned by EntityBean f
methods are also value types. These interfaces are mapped to IDL abstract valu
or abstract interfaces, using the rules in the Java Language to IDL Mapping.

Concrete implementations of these value types as well as application-specific
types are required to be available to clients (either pre-installed in the client’s env
ment or by downloading from the server) and can be potentially instantiated in a di
ent vendor’s CORBA runtime environment.

In addition, several Java exception classes that are thrown by remote methods a
sult in concrete IDL value types.

3.3 Client Side Stubs

The following figure illustrates the runtime objects used in a typical distributed E
enabled CORBA environment.

1.plain insecure IIOP, SECIOP, or IIOP over SSL
Sun Microsystems Inc. 9 August 11, 1999

Enterprise JavaBeans to CORBA

gen-

ient-
e stub
f the
ing

e

e
map

e:
Depending on the client type, the client stubs are either RMI-IIOP stubs, or stubs
erated from IDL as defined by the language-specific CORBA mappings [6].

This specification does not impose any additional requirements on the type of cl
side stubs created by ORBs while unmarshaling remote object references. Thus th
received by the client application may not correspond to the most-derived type o
EJB home/object. A CORBA client should use language-specific APIs for narrow
remote object references to the desired type. An EJB/CORBA client should use thjav-
ax.rmi.PortableRemoteObject.narrowAPI for obtaining the desired type.

3.4 Mapping of system exceptions

Java system exceptions includingjava.rmi.RemoteExceptionand its subclasses may b
thrown by the EJB container, as specified in EJB1.1. The EJB server is required to
these exceptions to CORBA system exceptions as specified in the following tabl

System exception thrown by EJB
container

CORBA system exception
received by client

javax.transaction.
TransactionRolledbackException

TRANSACTION_ROLLEDBACK

javax.transaction.
TransactionRequiredException

TRANSACTION_REQUIRED

javax.transaction.
InvalidTransactionException

INVALID_TRANSACTION

java.rmi.NoSuchObjectException OBJECT_NOT_EXIST

java.rmi.RemoteException UNKNOWN

enterprise Bean

container ‘s address space

EJB home object

EJB object

remote

client address space

client

EJB object stub

EJB home stub containerIIOP
Sun Microsystems Inc. 10 August 11, 1999

Enterprise JavaBeans to CORBA

tem
s spec-

ns
For EJB/CORBA clients, the ORB’s unmarshaling machinery will map CORBA sys
exceptions received in the IIOP reply message to the appropriate Java exception a
ified in the Java Language to IDL mapping.

3.5 CORBA Object and Enterprise JavaBean Relationship

 As a server-side implementation technique, the CORBA runtime may use an
RMI-IIOP servant implementing the enterprise bean’s EJBObject interface
which receives a method invocation and delegates it to the appropriate
enterprise bean instance. One way to achieve this is to use Tie based skeleto
(as defined in the Java Language to IDL Mapping [7]). Since the architecture of
stubs and skeletons does not relate to on-the-wire interoperability, it is not
specified in this document. This document also does not require usage of the
Portable Object Adapter or any other CORBA based server-side architecture.

client EJB Server

IIOP
stub EJBObject

(servant)
EJB

instance
tie
Sun Microsystems Inc. 11 August 11, 1999

Enterprise JavaBeans to CORBA

] for
COS
dard
Ser-

ple-
con-

loyer
ct ref-
path-

ts are

n in

y

t

4 Mapping of Naming

A CORBA based EJB runtime is required to use the OMG COS NameService [4
publishing and resolving EJBHome objects. EJB/CORBA clients access the
NameService by using the Java Naming and Directory Interface API with the stan
COS Naming service provider [10]. Plain CORBA clients access the COS Name
vice by using the IDL for the CosNaming module specified in [4] .

The CORBA Interoperable Naming Service specification [9] should also be im
mented by CORBA-based EJB servers to allow clients to lookup the root naming
text in an interoperable manner.

4.1 COS Namespace Layout

When an EJB1.1 jar is deployed into an EJB/CORBA server environment, the dep
chooses a pathname in the COSNaming namespace at which the EJBHome obje
erence is bound. The EJB1.1 specification does not prescribe the format of this
name.

For example, if an ejb-jar contains four enterprise beans whose EJBHome objec
deployed with names:bank/account/checking, bank/account/saving, bank/teller/ATM,
andbank/managerthen the COSNaming namespace would be organized as show
the following figure:

In the figure above, there are 5 naming contexts:

• naming context 0 is the root of the COSNaming name space. One possible wa
of obtaining it is the ORB’s resolve_initial_references method with
“NameService” as the argument.

• naming context 1 is the subcontext under which EJBHome objects for
enterprise beans in this ejb-jar are “installed”. Note that this specification does
not mandate any relationship between naming contexts 0 and 1. If they are no

Namespace
Root

bank

account manager

checking

Naming Context

saving ATM

teller

0

1

2

3 4

EJBHome
Sun Microsystems Inc. 12 August 11, 1999

Enterprise JavaBeans to CORBA

h
in
the same, then the client doing the resolve operation has to be configured wit
the path between them. There is also no requirement that all EJBHome objects
an ejb-jar should be installed under one subcontext.

• naming context 2 is bound to context1 with namebank ; naming contexts 3 and
4 are bound to context 2 with namesaccount andteller respectively.
Sun Microsystems Inc. 13 August 11, 1999

Enterprise JavaBeans to CORBA

Ob-
ing

by the
rver.
serv-

ion to

s an
sac-
ute in
rfor-

t be

cute

.

e

e

e

the
t
trans-

-
es.
5 Mapping of Transactions

A CORBA based EJB runtime is required to use an implementation of the CORBA
ject Transaction Service (OTS) version 1.1 [5] for transaction support. The follow
sections describe the mapping of the transaction concepts in EJB to OTS.

5.1 Transaction Propagation

For enterprise beans that may execute within the scope of a transaction started
client, the client’s transaction context must be implicitly propagated to the EJB se
The OTS requires client ORBs to propagate transaction context to the server if the
er CORBA object inherits from theCosTransactions::TransactionalObjectIDL inter-
face. This subsection specifies the rules which allow transaction context propagat
occur for enterprise beans, based on the OTS.

EJB allows transaction attributes to be specified per method, while OTS only allow
entire IDL interface to be marked transactional. The rules below ensure that tran
tion context will be propagated if any method of an enterprise bean needs to exec
the client’s transaction context. However, in some cases there may be extra pe
mance overhead of propagating the client’s transaction context even if it will no
used by the enterprise bean method.

The following rules list the types of EJB interfaces having remote methods that exe
in the client’s transaction context:

• SessionBean remote interfaces satisfying both the following rules:

• the SessionBean’s transaction demarcation type is set to “Container”, i.e
SessionBeans with container-managed transactions, and

• at least one of the SessionBean’s remote interface methods has one of th
transaction attributes “Supports”, “Required” or “Mandatory”.

• EntityBean remote interfaces satisfying the following rule:

• at least one of the EntityBean’s remote interface methods has one of th
transaction attributes “Supports”, “Required” or “Mandatory”.

• EntityBean home interfaces satisfying the following rule:

• at least one of the EntityBean’s home interface methods has one of th
transaction attributes “Supports”, “Required” or “Mandatory”.

The IDL mapping of an EJB interface satisfying the above rules must inherit from
CosTransactions::TransactionalObjectIDL interface. This ensures that if the clien
makes an invocation to the EJB home/object within the scope of a transaction, the
action context will be implicitly propagated to the server.

For EJB/CORBA servers which use implicit IDL, the is_a operation (defined onCOR-
BA::Object) with the repository-id parameter "IDL:omg.org/CosTransactions/Trans
actionalObject:1.0" should return TRUE for EJB interfaces satisfying the above rul
Sun Microsystems Inc. 14 August 11, 1999

Enterprise JavaBeans to CORBA

tion
to the
5.2 Client-side Demarcation

A CORBA client will typically use theCosTransactions::CurrentOTS interface to de-
marcate transaction boundaries. An EJB/CORBA client will use thejavax.transaction
.UserTransactioninterface in the Java Transaction API to demarcate transac
boundaries. In both cases the ORB must propagate transaction context implicitly
server as described in section 5.1.
Sun Microsystems Inc. 15 August 11, 1999

Enterprise JavaBeans to CORBA

uires

l for
urity
m-

urity
urity

P

6 Mapping of Security

The main security concern in the EJB1.1 specification is access control, which req
the EJB server to determine the client’s security identity.

This specification does not require usage of a specific CORBA security protoco
propagating security information. Vendors should use compatible CORBA sec
protocols to ensure on-the-wire interoperability. This specification will track the Co
mon Secure Interoperability RFP at OMG [8].

EJB/CORBA servers should determine the client identity based on the actual sec
and communication protocols used by the ORB, as specified in the CORBA Sec
Service [3]:

• plain IIOP - since the Security Service does not specify the mechanisms for
propagating identity information in plain IIOP messages, the determination of
client identity is vendor specific.

• Common Secure IIOP(CSI) - The client identity is defined by the specific
mechanism (GSSKerberos, SPKM, CSI-ECMA) used with SECIOP (Secure
IIOP).

• IIOP over SSL- The client’s identity is the X.500 distinguished name of the
subject obtained from the X.509 certificate during SSL client authentication.
Note: since SSL does not support delegation, an EJB/CORBA server using IIO
over SSL may not be able to propagate client principals from caller to callee in
an interoperable manner.
Sun Microsystems Inc. 16 August 11, 1999

Enterprise JavaBeans to CORBA

/

-

-

Appendix A: References

[1] Enterprise JavaBeans Specification, Version 1.1 (http://java.sun.com/products/ejb
docs.html)

[2] CORBA 2.3 Specification (http://www.omg.org/cgi-bin/doc?formal/98-12-01)

[3] CORBA Security Service (http://www.omg.org/corba/sectrans.html#sec)

[4] CORBA Naming Service (http://www.omg.org/corba/sectrans.html#nam)

[5] CORBA Transaction Service (http://www.omg.org/corba/sectrans.html#trans)

[6] Mapping of OMG IDL to Java (http://www.omg.org/cgi-bin/doc?formal/99-07-53)

[7] Java Language to IDL Mapping (http://www.omg.org/cgi-bin/doc?formal/99-07
59)

[8] Common Secure Interoperability RFP (http://www.omg.org/docs/orbos/99-01
10.pdf)

[9] Interoperable Name Service (http://www.omg.org/docs/orbos/98-10-11.pdf)

[10] Java Naming and Directory Service Providers (http://java.sun.com/products/jndi/
serviceproviders.html)

[11] Java 2 Platform, Enterprise Edition Specification (http://java.sun.com/j2ee/
docs.html)
Sun Microsystems Inc. 17 August 11, 1999

Enterprise JavaBeans to CORBA

p-

p-
Appendix B: Enterprise JavaBeans IDL

B.1 OMG IDL mapping for Enterprise Javabeans 1.1

module javax {

module ejb {

// Exceptions

valuetype CreateException: ::java::lang::_Exception {

 factory create__();

 factory create__CORBA_WStringValue(in ::CORBA::WStringValue arg0);

};

exception CreateEx {

 CreateException value;

};

#pragma ID CreateException “RMI:javax.ejb.CreateExce
tion:7C78AA9E9FB0D1B7:575FB6C03D49AD6A”

valuetype DuplicateKeyException: ::javax::ejb::CreateException {

 factory create__();

 factory create__CORBA_WStringValue(in ::CORBA::WStringValue arg0);

};

exception DuplicateKeyEx {

 DuplicateKeyException value;

};

#pragma ID DuplicateKeyException “RMI:javax.ejb.DuplicateKeyExce
tion:3112CAD2A6288A29:9ADDF450AB68AAC4”

valuetype FinderException: ::java::lang::_Exception {

 factory create__();

 factory create__CORBA_WStringValue(in ::CORBA::WStringValue arg0);

};
Sun Microsystems Inc. 18 August 11, 1999

Enterprise JavaBeans to CORBA

-

ep-

p-
exception FinderEx {

 FinderException value;

};

#pragma ID FinderException “RMI:javax.ejb.FinderExcep
tion:7C78AA9E9FB0D1B7:79EE1514C8B7CA15”

valuetype ObjectNotFoundException: ::javax::ejb::FinderException {

 factory create__();

 factory create__CORBA_WStringValue(in ::CORBA::WStringValue arg0);

};

exception ObjectNotFoundEx {

 ObjectNotFoundException value;

};

#pragma ID ObjectNotFoundException “RMI:javax.ejb.ObjectNotFoundExc
tion:3112CAD2A6288A29:00106DD5ADF01DDA”

valuetype RemoveException: ::java::lang::_Exception {

 factory create__();

 factory create__CORBA_WStringValue(in ::CORBA::WStringValue arg0);

};

exception RemoveEx {

 RemoveException value;

};

#pragma ID RemoveException “RMI:javax.ejb.RemoveExce
tion:7C78AA9E9FB0D1B7:C06A008FD05A462A”

// Forward references

interface EJBHome;

interface EJBObject;
Sun Microsystems Inc. 19 August 11, 1999

Enterprise JavaBeans to CORBA
abstract valuetype EJBMetaData;

abstract interface Handle;

abstract interface HomeHandle;

// Interfaces

interface EJBHome {

 readonly attribute ::javax::ejb::EJBMetaData EJBMetaData;

 readonly attribute ::javax::ejb::HomeHandle homeHandle;

 void remove__java_lang_Object(in ::java::lang::_Object arg0)

raises (::javax::ejb::RemoveEx);

 void remove__javax_ejb_Handle(in ::javax::ejb::Handle arg0)

raises (::javax::ejb::RemoveEx);

};

#pragma ID EJBHome “RMI:javax.ejb.EJBHome:0000000000000000”

interface EJBObject {

 readonly attribute ::javax::ejb::EJBHome EJBHome;

 readonly attribute ::javax::ejb::Handle handle;

 readonly attribute ::java::lang::_Object primaryKey;

 boolean isIdentical(in ::javax::ejb::EJBObject arg0);

 void remove()

raises (::javax::ejb::RemoveEx);

};

#pragma ID EJBObject “RMI:javax.ejb.EJBObject:0000000000000000”

// Abstract interfaces

abstract interface Handle {
Sun Microsystems Inc. 20 August 11, 1999

Enterprise JavaBeans to CORBA
 readonly attribute ::javax::ejb::EJBObject EJBObject;

};

#pragma ID Handle “RMI:javax.ejb.Handle:0000000000000000”

abstract interface HomeHandle {

 readonly attribute ::javax::ejb::EJBHome EJBHome;

};

#pragma ID HomeHandle “RMI:javax.ejb.HomeHandle:0000000000000000”

// Value types

abstract valuetype EJBMetaData {

 ::javax::ejb::EJBHome getEJBHome();

 ::javax::rmi::CORBA::ClassDesc getHomeInterfaceClass();

 ::javax::rmi::CORBA::ClassDesc getPrimaryKeyClass();

 ::javax::rmi::CORBA::ClassDesc getRemoteInterfaceClass();

 boolean isSession();

};

}; // end module ejb

}; // end module javax
Sun Microsystems Inc. 21 August 11, 1999

	Contents
	1 Introduction 6
	2 Goals 7
	3 Mapping of Distribution 9
	4 Mapping of Naming 12
	5 Mapping of Transactions 14
	6 Mapping of Security 16
	Appendix A: References 17
	Appendix B: Enterprise JavaBeans IDL 18
	1 Introduction
	1.1 Target Audience
	1.2 Mapping Overview
	1.3 Acknowledgments

	2 Goals
	2.1 Types of CORBA Clients

	3 Mapping of Distribution
	3.1 Mapping Java Remote Interfaces to IDL
	3.1.1 Marking of transaction-enabled enterprise bean interfaces

	3.2 Mapping value objects to IDL
	3.3 Client Side Stubs
	3.4 Mapping of system exceptions
	javax.transaction.
	TransactionRolledbackException
	TRANSACTION_ROLLEDBACK
	javax.transaction.
	TransactionRequiredException
	TRANSACTION_REQUIRED
	javax.transaction.
	InvalidTransactionException
	INVALID_TRANSACTION
	java.rmi.NoSuchObjectException
	OBJECT_NOT_EXIST
	java.rmi.RemoteException
	UNKNOWN
	3.5 CORBA Object and Enterprise JavaBean Relationship

	4 Mapping of Naming
	4.1 COS Namespace Layout

	5 Mapping of Transactions
	5.1 Transaction Propagation
	5.2 Client-side Demarcation

	6 Mapping of Security
	Appendix A: References
	[1] Enterprise JavaBeans Specification, Version 1.1 (http://java.sun.com/products/ejb/ docs.html)
	[2] CORBA 2.3 Specification (http://www.omg.org/cgi-bin/doc?formal/98-12-01)
	[3] CORBA Security Service (http://www.omg.org/corba/sectrans.html#sec)
	[4] CORBA Naming Service (http://www.omg.org/corba/sectrans.html#nam)
	[5] CORBA Transaction Service (http://www.omg.org/corba/sectrans.html#trans)
	[6] Mapping of OMG IDL to Java (http://www.omg.org/cgi-bin/doc?formal/99-07-53)
	[7] Java Language to IDL Mapping (http://www.omg.org/cgi-bin/doc?formal/99-07- 59)
	[8] Common Secure Interoperability RFP (http://www.omg.org/docs/orbos/99-01- 10.pdf)
	[9] Interoperable Name Service (http://www.omg.org/docs/orbos/98-10-11.pdf)
	[10] Java Naming and Directory Service Providers (http://java.sun.com/products/jndi/ serviceprovi...
	[11] Java 2 Platform, Enterprise Edition Specification (http://java.sun.com/j2ee/ docs.html)

	Appendix B: Enterprise JavaBeans IDL
	B.1 OMG IDL mapping for Enterprise Javabeans 1.1

