
JavaHelpTM 1.0 Specification

 Sun Microsystems, Inc.

Copyright 1998 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
worldwide, limited license (without the right to sublicense) under SUN’s intellectual property rights that
are essential to practice the JavaHelp 1.0 Specification "Specification") to use the Specification for
internal evaluation purposes only. Other than this limited license, you acquire no right, title or interest in
or to the Specification and you shall have no right to use the Specification for productive or commercial
use.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR
227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
DERIVATIVES.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JavaHelp, JDK, Java, HotJava, HotJava
Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing,
Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup
logo, and Visual Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

1JavaHelp

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

JavaHelp 1.0 - Introduction

Status of this Specification
JavaHelpTM is the Help system for the JavaTM Platform. These documents describe the JavaHelp 1.0
specification. As of the publication of this document, the closest released implementation is the JavaHelp
1.0 release which follows this specification.

We followed Sun’s Open Development Process for the Java Platform, an open and inclusive process that
produces high-quality specifications in "Internet-time". Through this process the critical feedback from all
reviewers helped us transform early specifications into a high quality final specifications that satisfied the
needs of the user community. The release of this specification is part of this process.

We expect the specification to continue to be extended in future updates. Please send us your feedback to
guarantee that future specifications best suites your needs.

How to read this Specification
Two sets of documents are included. The first set is the actual specification that describes the JavaHelp
API and its use. Also included are several related documents that, while not technically part of the
specification, help in understanding it. These documents describe aspects of Sun’s reference
implementation.

We suggest that you begin by reading the specification Overview. In order to make the JavaHelp system
features more concrete and easy to understand, a number of usage scenarios are explained in a companion
document. These scenarios describe some of the different ways the JavaHelp system can be used in Java
applications.

2JavaHelp

http://java.sun.com/aboutJava/standardization/javaopen.html

You may want to complement your reading of this specification by exploring the JavaHelp 1.0 release
which corresponds to this specification. This reference implementation also supports some features that
are useful for online documentation systems but that we have judged to not be appropriate for inclusion in
the specification at this time. The release also includes examples of documentation and applications that
use this specification.

Table of Contents of Specification

Introduction to the JavaHelp API (this document)
Overview of the JavaHelp API
Formats of JavaHelp Data Files
Localizing JavaHelp
Customizing JavaHelp
JavaBeans Help Data
Context-Sensitive Help
Search API
Merging Help Information
Specification Change History
The JavaHelp Classes

JavaHelp Class Architecture
Package javax.javahelp

Related Documents

JavaHelp Scenarios
The JavaHelp 1.0 Reference Implementation
Java Components
jar: Protocol Specification

Further Reading
Up-to-date public information on JavaHelp technology, including our latest presentations at public
forums, is available at our home page at http://java.sun.com/products/javahelp . We also maintain a
mailing list for regular information about JavaHelp updates and events. To subscribe, send mail to
listserv@javasoft.com. In the body of the message type SUBSCRIBE JAVAHELP-INFO

Further information on Java technology can be found at Sun’s Java web site at http://java.sun.com . Of
special interest is the description of the next version of the Java Development Kit JDKTM 1.2 , and within
it the information on Swing, standard extensions and the jar: protocol. Slightly more up-to-date
information on Swing can be obtained at The Swing Connection’s home page.

3JavaHelp

http://java.sun.com/products/javahelp
http://java.sun.com/
http://java.sun.com/products/jdk/1.2/
http://java.sun.com/products/jdk/1.2/
http://java.sun.com/products/jdk/1.2/
http://java.sun.com/products/jdk/1.2/
http://java.sun.com/products/jdk/1.2/docs/guide/swing/
http://java.sun.com/products/jdk/1.2/docs/guide/extensions/
http://java.sun.com/products/jdk/1.2/docs/guide/jar/
http://java.sun.com/products/jfc/swingdoc-current/doc/

Your Feedback
We encourage your feedback at javahelp-comments@eng.sun.com.

We thank you for your help in making this, and future specifications, meet your needs!

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 19:13:58 MDT 1999

4JavaHelp

JavaHelpTM 1.0 - Overview

Copyright 1998-1999 Sun Microsystems

Introduction
JavaHelpTM is an online help system specifically tailored to the Java platform. JavaHelp consists of a
fully featured, highly extensible specification and an implementation of that specification written entirely
in the Java language.

JavaHelp enables Java developers to provide online help for:

Applications (both network and stand-alone)
Applets
JavaBean components
Desktops
HTML pages

This document is an overview of the JavaHelp specification. API documentation generated using
javadoc can be found starting at api/index.html

Features
The main features of JavaHelp are:

5JavaHelp 1.0 - Overview

Help Viewer The standard JavaHelp viewer consists of a toolbar and two panes:

Content pane Displays help topics formatted using HTML.

Navigation
pane

A tabbed interface that allows users to switch between the
table of contents, index, and full text search displays.

Table of contents XML-based. Collapsible/expandable display of topics in the help system.
Supports unlimited levels and merging of multiple TOCs.

Index XML-based. Supports merging of multiple indexes.

Full text search The full text of the content is searchable. Different engines can be used.

Compression and
encapsulation

Encapsulation and compression are optional. Uses the standard Java JAR
format to encapsulate the entire help system into a single, optionally
compressed file.

Embeddable help
windows

Help windows (individually or in combination) can be embedded directly
into application interfaces.

Customization JavaHelp is designed to permit great flexibility in customizing both the user
interface and functionality.

The reference implementation adds the following to this list:

Flexible
Search Engine

The full text of the content can be searched with a flexible search engine that
supports multi-word queries.

PopUps and
Active Content

PopUps can be obtained by embedding lightweight Java components in HMTL
pages. Active content (e.g. a button that when pressed can act on the application)
can be implemented using the same mechanism.

Serialization
Serialized objects of JavaHelp Swing components will not be support in V1.0. A future release of
JavaHelp will provide full serialization including support for long term persistence.

Supported Platforms
JavaHelp 1.0 is a standard extension for both the JDK1.1 and the JDK1.2 platforms.

Although JDK1.1 is in wider use at the time of writing of this document, JDK1.2 is fundamentally a better
platform and it offers many features useful to JavaHelp customers, including:

6JavaHelp 1.0 - Overview

http://java.sun.com/products/jdk/1.1
http://java.sun.com/products/jdk/1.2

The jar: protocol in the platform, which provides a general and consistent (and efficient) way to
refer to files within a JAR file.
Temporary files, providing improved full-text search performance.
More flexible ClassLoader classes that can, for example, easily be used to create a ClassLoader
instance to a given URL.
An improved security model.
Safe access to the SystemEventQueue from an Applet to support some of the Context-Sensitive
features.
Improved I18N support, including input methods.
Printing support.
Other improved set of APIs, including sound, 2D and 3D graphics.

The Specification
The JavaHelp specification has two main parts:

API The interface between the application and the help system

File
formats

Formats of the files that are part of the help system (HelpSet, table-of-contents, map,
index, search database)

API Structure
The classes and methods in JavaHelp 1.0 can be partitioned depending on the tasks so that clients of the
API need only use as much as they need. The following are the most useful collections:

Basic Content
Presentation

HelpSet and HelpBroker are used to locate and create HelpSets and
then to present these to the user using the default HelpBroker.

Complete Access to
JavaHelp
Functionality

A number of classes provide for access to Help Data and for control of the
navigation of the online content. For example, the NavigatorView class
provides access to the data in a Navigator View.

Full-Text Search The classes in the javax.help.search package provide a simple API
for full-text search that can also be used independently of help applications.

Swing Classes Finally, JavaHelp 1.0 defines Swing components for Navigators, Content
Viewer and Help Viewer which can be embedded into an Application if
desired. Custom Navigators are also presented to the API as Swing
components.

7JavaHelp 1.0 - Overview

Main Concepts
Below we describe the fundamental concepts in the specification. More details are available in other parts
of this specification and in the javadoc comments of the classes.

HelpSet

A HelpSet is a collection of help content (topics), navigational views, and mapping information. A
HelpSet can contain other HelpSets which are merged merged together.

HelpSet File

The HelpSet file describes a HelpSet and contains:

Title and other global information
Map information that associates topic IDs with topic files
One or more navigational views on the content

HelpBroker

A Help Broker object is the abstraction of the presentation to a HelpSet. An application can use a
HelpBroker object to interact programmatically with the presentation of information. The default
HelpBroker implementation uses a Swing JFrame, but other implementations are possible (for example,
embedding help objects).

Help Views and Help Navigators

JavaHelp provides "context views" for navigating through content information; for example, most
HelpSets will have a view displaying a Table of Contents. A view has a name, a NavigatorView Class
identifying its behavior, some information (e.g. URLs, arguments) used by the instance, and a
JHelpNavigator which is a GUI component that presents the view to the user. Navigational views are
visible to the JavaHelp APIs and the client can request to make a specific view active.

The view’s class defines what data it reads, its format, how it will be presented visually, and it also defines
the merging rules. A view is a subclass of NavigatorView. The createNavigator() method of a
view returns a component that is used to graphically present the view; for the standard views this
component is a Swing component, specifically, a subclass of JHelpNavigator.

Any JavaHelp implementation must support the standard NavigatorView classes, but a HelpSet may
include views with other classes, as long as they are available (technically, as long as their definitions are
available to the ClassLoader instance of the HelpSet). In many cases this means they are either in the
implementation of JavaHelp, in the CLASSPATH, or they are listed in the ARCHIVE attribute of an
APPLET.

8JavaHelp 1.0 - Overview

Standard Help Views and Help Navigators

All JavaHelp implementations must provide the following classes:

javax.help.TOCView
javax.help.JHelpTOCNavigator

NavigatorView for parsing Table of Contents data
and the JHelpNavigator for its presentation.

javax.help.IndexView
javax.help.JHelpIndexNavigator

The NavigatorView and JHelpNavigator for parsing
and presenting Index data.

javax.help.SearchView
javax.help.JHelpSearchNavigator

The NavigatorView and JHelpNavigator for
interacting with a search engine using the
javax.help.search.* classes.

The formats used by the TOC and the Index Navigators are described in FileFormat. The Search
Navigator interacts with its data through a search engine that extends the SearchEngine class; one of the
Search View arguments is the class name of the search engine, the rest of the data is passed directly to the
search engine.

Content files

Help information (topics) is described through a collection of URLs. These URLs may be files, may be
within a JAR file, or they may be generated dynamically by the server.

Content information is presented depending on its (MIME) type. JavaHelp system implementations are
required to provide viewers for HTML3.2 content, but there is a registration mechanism in
JHelpContentViewer that is built upon the corresponding mechanism in JEditorPane in the Swing
package.

URL Protocols

JavaHelp authors can use a number of protocols in the URLs when they are used in the HelpSet file and
map files. The specific protocols available depend on the underlying platform. For example, JDK1.1
provides file: , http: , ftp: , while JDK1.2 adds the jar: protocol which provides access to files
within a JAR file. Specific implementations may support additional URL formats.

Map File

Applications (or navigational data) do not usually directly reference content files, instead they usually
reference them through string identifiers (IDs). This use of IDs insulates content development from
application development. Identifiers are mapped to content files in a map file. Multiple map files can be
combined within a HelpSet, but an identifier must be unique within a HelpSet in the resulting combined
map.

9JavaHelp 1.0 - Overview

Search

JavaHelp contains a simple search API in the package javax.help.search. This package provides creation
and access to the search databases used by JavaHelp. Different search engines will be identified as
subclasses of javax.help.search.SearchEngine. The search engine included in the JavaHelp reference
implementation is com.sun.java.help.search.DefaultSearchEngine .

Merging

In simple applications, the help data may be described in a single HelpSet file. Other situations are best
described as a collection of HelpSets, for example:

An application can merge help information available locally on a user’s disk, with information on a
web site
Product suites can merge help information when constituent applications are installed
HelpSets from an application’s constituent Beans can be merged for a unified presentation

JavaHelp 1.0 provides a basic mechanism for merging the contents of several HelpSets, the resulting
HelpSet merges the map information and the navigational views. See Merge for additional information.

Extensibility

The JavaHelp system is designed so it can be extended in several dimensions:

The JHelpContentViewer registration mechanism can be used to provide new content viewers
The NavigatorView and JHelpNavigator mechanisms can be used to provide new file
formats, or new presentations
The javax.help.search classes can be used to replace search engines.

For more details see Customization

Updating Help Information

It is often important to be able to update a product’s online help after it has been released. The JavaHelp
system supports this in several ways--it is possible to entirely replace the information (if in a JAR), or
replace parts of it (if spread over multiple files).

Because you can refer to multiple maps in the HelpSet file, the JavaHelp system provides additional
flexibility in this update process. The HelpSet file can extend these maps, making it possible to modify the
mapping without modifying any existing map files (which may be inside a JAR file). Finally, since the
URL protocols support remote access, if the application is running in a connected environment, it is
possible to keep some information remotely.

10JavaHelp 1.0 - Overview

File Formats
In summary, the JavaHelp system specifies the following file formats:

HelpSet encapsulation and compression using JAR files
HTML topic files - HTML 3.2 minus the APPLET tag (use the OBJECT tag to implement
lightweight JComponents in the reference implementation)
HelpSet file
Map files
Standard navigation view formats (TOC, index, search)

More information is available in FileFormat.html.

An Example
The following is an example of a HelpSet file.

 <?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
 <!DOCTYPE helpset
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 1.0//EN"
 "http://java.sun.com/products/javahelp/helpset_1_0.dtd">

 <helpset version="1.0">

 <!-- the title for the helpset -->
 <title>An Example</title>

 <!-- maps -->
 <maps>
 <homeID>top</homeID>
 <mapref location="jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/TheMap.map" />
 </maps>

 <!-- A TOC view -->
 <view>
 <name>TOC</name>
 <label>Table Of Contents</label>
 <type>javax.help.TOCView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/TOC.xml</data>
 </view>

 <!-- Another TOC view; note that it has a different name -->
 <view>
 <name>LocalTOC</name>
 <label>Appendix One</label>
 <type>javax.help.TOCView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/LocalTOC.xml</data>
 </view>

 <!-- An Index view -->
 <view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/Index.xml</data>
 </view>

 <!-- A Search view; note the engine attribute -->

11JavaHelp 1.0 - Overview

 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data engine="com.sun.java.help.search.SearchEngine">
 jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/SearchData
 </data>
 </view>

 </helpset>

The HelpSet file starts a DOCTYPE identifying the DTD for the file. The DTD is versioned to allow for
future changes. Next follows the title of the HelpSet.

The next section provides information about ID->content file mapping. An ID is given indicating what
information within the HelpSet to show by default. Next a mapref tag indicates where to locate the map.
In our case the mapfile is contained within a JAR file on the local disk.

The next three sections of the HelpSet file provide information about different views of the content
information. The first view, "TheTOC", is in a local disk. The next section is a different Table of Contents
view, ("MyLocalTOC"), that uses the same information as the first view, while the next section is an
index on the local disk. The final section defines search information.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 19:13:58 MDT 1999

12JavaHelp 1.0 - Overview

JavaHelpTM 1.0 - File Formats

Copyright 1998-1999 Sun Microsystems

Overview
The JavaHelp system defines the file formats for the meta data files: HelpSet file, Map file, and the data
for the standard TOC and Index views. The file formats used in JavaHelp are based on industry standards:

The HelpSet (help content and meta information) is encapsulated and compressed using the JAR
(Java Archive) format.
Map, table of contents and index file models are described in XML.
The HelpSet file is based on the Extended Markup Language (XML) as defined by the World Wide
Web Consortium (http://w3c.org/XML/).
Localization is done following the I18N Java conventions.

JavaHelp provides for an extensible set of navigational types, but predefines a few types. The standard
types are:

javax.help.TOCView for the Table of Contents.
javax.help.IndexView for the Index.
javax.help.SearchView for the Search.

The typical files involved in a HelpSet are:

HelpSet file: Identifies the map, and navigational views (e.g. TOCs, indexes and search database
files).
Map file(s): Defines the map that associates topic IDs used by the application to refer to HTML topic
files.
Table of contents: Defines the table of contents entries, their structure, and the IDs to which they map
Index: Defines the index entries and the IDs to which they map
Search Database: The search database searched by the search engine. The default search database is
created using the JavaHelp system jhindexer command.

13JavaHelp 1.0 - File Formats

http://www.w3.org/TR/xml
http://w3c.org/XML/

Content: The HTML topic files that provide information to help users

Document Type Definitions (DTDs) for HelpSet, Map, TOC View and Index View data are included in
this specification and can be used for validation. In each of these cases, the valid documents are those
valid XML documents conformant with the DTD except that the DOCTYPE section must not have any
inner DTD subset (this is the same restriction used in the W3C SMIL recommended specification).

JAR is used to encapsulate and compress a HelpSet into a single file. Encapsulation and compression are
not required, but recommended in most production environments.

HelpSet File
The HelpSet file is localized following the same naming conventions used with ResourceBundle. Once a
HelpSet file for a given locale has been found, no additional localization searches are needed, which is
very important in a networked environment.

Format

HelpSet files are encoded in an XML-based syntax; The DTD is dtd/helpset_1_0.dtd. The top level tag is
<helpset> . A version attribute is optional, when present its value must be "1.0".

Tag Description Allowed In Body Attributes

helpset HelpSet definition top-level none
xml:lang ="lang" Language for this item

version ="1.0" (optional) version

The HelpSet file is organized into sections within the <helpset> tag. There is a section for ID maps,
sections for the navigational views, and a final section for subhelpsets. The general outline of a HelpSet
file is:

 <?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
 <!DOCTYPE helpset
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 1.0//EN"
 "http://java.sun.com/products/javahelp/helpset_1_0.dtd">

 <!-- next is a Processing Instruction (PI).
 This is ignored by the Reference Implementation -->
 <?MyFavoriteApplication this is data for my favorite application ?>

 <helpset version="1.0">

 <!-- Global properties -->
 <title>My Title</title>

 <!-- maps section -->
 <maps>
 <homeID>my homeID</homeID>
 <mapref location="url"/>

14JavaHelp 1.0 - File Formats

http://java.sun.com/products/jdk/1.1/docs/guide/jar/index.html

 </maps>

 <!-- Zero or more View sections -->
 <view>
 <name>TOC</name>
 <type>javax.help.TOCView></type>
 <data>jar:file:/c:/Program Files/JW3.0/JW3.0.jar!/TOC.xml</data>
 </view>

 <!-- Optional subHelpSet section >
 <subhelpset location="file:/c:/Foobar/HelpSet1.hs"/>
 </helpset>

Whenever a relative URL specification appears in a HelpSet, it is to be interpreted relative to the URL of
the HelpSet (note that the constructor for a HelpSet takes a URL).

Processing Instructions

The reference implementation ignores the Processing Instructions.

HelpSet properties
A HelpSet has a title that is used mostly in the presentation.

Tag Description Allowed In Body Attributes

title Title of the HelpSet helpset Actual title none

ID Map Section

The second section of a HelpSet file contains information on the mapping of IDs to URLs used for context
sensitive help. The homeId tag provides the default entry to present when a HelpSet is first shown. The
mapref tag provides a reference to a map file.

Tag Description Allowed In Body Attributes

maps Map definition helpset empty none

homeID Default ID of the HelpSet maps ID string none

mapref URL to map maps empty location, the spec relative to HelpSet

Finally, an ID Map section corresponding to a Bean will want to include a topic ID corresponding to the
BeanInfo.getHelpId(). If there is a single Bean for this HelpSet file, the value of <homeID> could be
used. If several Beans share the HelpSet file, several topic IDs are needed

15JavaHelp 1.0 - File Formats

Map Example

The following is an example of a map definition in a HelpSet file:

<map>
 <data>jar:file:/c:Program Files/JWS3.0/JW3.0.jar!/TheMap.map</data>
 <data>jar:http://www.sun.com/devpro/JWS3.0Encyclopedia.jar!/TheMap.map</data>
</map>

NOTE: There is a bug in the JavaHelp 1.0 reference implementation which only supports one map.

Navigational Views Section

The final sections of a HelpSet file describe the navigational views, which include tables of contents,
indices, and search. There are three mandatory tags for each view: <label> , <name>, and <type> .
Additionally, most views will define <data>.

Tag Description
Allowed

In
Body Attributes

view View definition helpset none xml:lang

name
a name identifying the
view

view
text of the
name

none

label
a label to show in the
presentation

view
text for the
label

none

type
a subclass of
NavigatorView

view
name of the
class

none

data URL spec view
text of the
spec

optional "engine", a class
implementing SearchEngine

The language specified in the xml:lang attribute of name must not be different that of the view, if that
was given explicitly. The language specified in the xml:lang attribute of view must not be different to
that the HelpSet, if that was given explicitly.

View Example

The following is an example of a view section in a HelpSet file:

<view>
 <name>TOC</name>
 <name>Table of Contents</name>
 <type>javax.help.TOCView</type>
 <data>jar:file:/c:Program Files/JWS3.0/JW3.0.jar!/toc.xml</data>
</view>

16JavaHelp 1.0 - File Formats

SubHelpSet Section

A HelpSet file can statically include other HelpSets using the <subhelpset> tag. The HelpSets
indicated using this tag are merged automatically into the HelpSet where the tag is included. If the URL
spec refers to a non-existing file, the subhelpset tag is silently ignored; this permits an enclosing HelpSet
to refer to subhelpsets that may or not be installed. More details about merging can be found in Merge.

Tag Description Allowed In Body Attributes

subhelpset Static subHelpSet to merge helpset empty location="URL spec to HelpSet file"

Map Files
Each map file provides a mapping of topic IDs to URLs. Map files are encoded in an XML-based syntax;
The DTD is dtd/map_1_0.dtd. The top level tag is <map>. A version attribute is optional, when present its
value must be "1.0".

The main tag is mapID relating a topic ID and a URL specification. Relative URL specifications are to be
resolved against the absolute URL for the map file.

A Map can contain only the following two tags:

Tag Description
Allowed

In
Body Attributes

map A Map top level empty
xml:lang ="lang"

Language for this
item

version ="1.0" (optional) version

mapID
An individual map
entry

empty map

target="string" ID

url="string" URL spec

xml:lang ="lang"
Language for this
item

The following is an example of a simple map file:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE map
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"
 "http://java.sun.com/products/javahelp/map_1_0.dtd">

<map version="1.0">

17JavaHelp 1.0 - File Formats

 <mapID target="intro" url="hol/hol.html" />
 <mapID target="halloween" url="hol/hall.html" />
 <mapID target="jackolantern" url="hol/jacko.html" />
 <mapID target="mluther" url="hol/luther.html" />
 <mapID target="reformation" url="hol/inforefo.html" />
</map>

Note that the IDs should be unique within the HelpSet (although they may also appear in a subhelpset of
this HelpSet).

Table of Contents
JavaHelp1.0 specifies one table of contents type: javax.help.TOCView . This navigational view
models a table of contents. TOC files are encoded in an XML-based syntax; The DTD is dtd/toc_1_0.dtd.
The top level tag is <toc> . A version attribute is optional, when present its value must be "1.0".

A TOC can contain only the following two tags:

Tag Description Allowed In Body Attributes

toc Table of contents top level empty

xml:lang ="lang"
Language
for this item

version ="1.0"
(optional)
version

tocitem

Table of contents
item. Tags can be
nested to create
hierarchical entries.

Text to show in
the
presentation

toc,
tocitem

target="string"
destination
ID

image="string"
destination
ID

xml:lang ="lang"
Language
for this item

Table of Contents Example

The following is an example of a table of contents file:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE toc
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 1.0//EN"
 "http://java.sun.com/products/javahelp/toc_1_0.dtd">

<toc version="1.0">
 <tocitem>Introducing JavaHelp
 <tocitem target="api" image="image/document.gif">
 JavaHelp API
 </tocitem>
 <tocitem target="platform" image="image/document.gif">

18JavaHelp 1.0 - File Formats

 JavaHelp platforms
 </tocitem>
 </tocitem>
</toc>

Index
JavaHelp1.0 specifies one index navigator view: javax.help.IndexView . This navigational view
models an index. Index files are encoded in an XML-based syntax; The DTD is dtd/index_1_0.dtd. The
top level tag is <index> . A version attribute is optional, when present its value must be "1.0".

An index can contain the following two tags:

Tag Description
Allowed

In
Body Attributes

index Index top-level empty

xml:lang ="lang"
Language
for this
item

version ="1.0"
(optional)
version

indexitem

Index item.
indexitem tags
can be nested to
create hierarchical
entries.

index,
indexitem

text to show
in the
presentation

target="string"
destination
ID

xml:lang ="lang"
what
language to
use

Index Example

The following is an example of an index file:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE index
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Index Version 1.0//EN"
 "http://java.sun.com/products/javahelp/index_1_0.dtd">
<index version="1.0">
 <indexitem>Java Applets
 <indexitem target="applet_over">
 Overview
 </indexitem>
 <indexitem>Usage
 <indexitem target="applet_insert">
 Inserting an applet in a content page
 </indexitem>
 <indexitem target="applet_editing">
 Editing an applet in a content page

19JavaHelp 1.0 - File Formats

 </indexitem>
 </indexitem>
 </indexitem>
</index>

Help Content
JavaHelp displays help topic files formatted using HTML version 3.2. Links are resolved using the URL
protocols supported by the underlying platform. Lightweight JComponents can be added to topic pages
using the <OBJECT> tag.

Search Database
JavaHelp1.0 specifies one search navigator view: javax.help.SearchView . This navigational view
models a search interacting with a search database though objects that implement the
javax.help.search package. The view has an <engine> tag that is the name of a class that is a
subclass of SearchEngine . That class is responsible for interpreting the search database that is
described by the URL in <data> .

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 17:07:13 MDT 1999

20JavaHelp 1.0 - File Formats

JavaHelpTM 1.0 - Localization

Copyright 1998-1999 Sun Microsystems

A Network Environment
JavaHelp follows the standard localization conventions used for ResourceBundle.getBundle(). In a
networked environment, each such query may require a number of requests across a network to determine
the desired bundle for a given Locale. JavaHelp is designed so that only one such search is required to
locate the HelpSet file. All other information is obtained by simple requests that start from this file.

Although the HelpSet file is localized following the same naming conventions as with Java Property
Resource Bundle, for technical reasons they are not property files. Instead, the method
HelptSet.getHelpSet() is used.

An invocation of HelpSet.getHelpSet(name, locale) invokes
HelpUtilities.getLocalizedResource() .
HelpUtitities.getLocalizedResource() eventually calls into
ClassLoader.getResource() with resource names that are based on the name passed and on the
Desired locale and the Default locale.

If the first argument to getHelpSet() is "name", the search is conducted in the order shown below
(from most specific to least specific). The extension is fixed to be ".hs ":

 name_ language _country _variant .hs
 name_ language _country .hs
 name_ language
 name
 name_ defaultlanguage _defaultcountry _defaultvariant
 name_ defaultlanguage _defaultcountry
 name_ defaultlanguage

This search order is the one used for ResourceBundle , where it is not exposed. It is captured and
exposed in HelpUtilities.getCandidates() .

21JavaHelp 1.0 - Localization

http://www.javasoft.com/products/jdk/preview/docs/api/java.util.ResourceBundle.html
http://www.javasoft.com/products/jdk/preview/docs/api/java.util.PropertyResourceBundle.html
http://www.javasoft.com/products/jdk/preview/docs/api/java.util.PropertyResourceBundle.html

Localized Documents
The HTML viewers are required to support localization as specified by the W3C HTML 4.0 standard.

Full Text Search
Java uses Unicode internally and it is well suited to internationalization and localization. One specific
requirement is that the search code be able to deal with documents that are written in both English and
another language. This combination occurs often when some documents have been translated but others
have not.

More Details
The "Localizing Help Information" section of the JavaHelp User’s Guide describes the localization
process in detail.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:46:01 MDT 1999

22JavaHelp 1.0 - Localization

JavaHelpTM 1.0 - Customization

Copyright 1998-1999 Sun Microsystems

Introduction
There are several mechanisms for customizing JavaHelp:

Defining a different default HelpBroker
Associating alternate content viewers with MIME types
Using non-standard NavigatorView or JHelpNavigator
Choosing SearchEngine
Exploiting the URL protocols

Help Broker
A HelpBroker provides abstraction of the presentation details of a HelpSet. There are two ways of
obtaining a HelpBroker: through an explicit instantiation of DefaultHelpBroker, or by invoking the
createHelpBroker() method on a HelpSet instance. The default HelpBroker returned by the
createHelpBroker() call is implementation dependent--the reference implementation returns
DefaultHelpBroker .

Constructors of HelpBroker s take a HelpSet instance as an argument; DefaultHelpBroker uses a
JHelp for its presentation, adding to it all the HelpNavigator s that were requested in the HelpSet
file and arranging them so they all share the same HelpSetModel .

A JavaHelp system implementation may choose not to create a DefaultHelpBroker as the default
HelpBroker for any of several reasons, for example to maintain a consistent presentation. Thus, it is
often best to use createHelpBroker() to obtain the HelpBroker .

23JavaHelp 1.0 - Customization

Content Viewers
The JavaHelp reference implementation uses JEditorPane to present the HTML content of a given
URL. This class supports a registration mechanism by which you can add viewers for given MIME types.
This mechanism is exported through the JHelpContentViewer JavaHelp class and can be used to display
additional MIME types, or to change the presentation of a given type from the default presentation. The
mapping can be changed globally or on a per-HelpSet instance. For additional information, see Key-Data
Map below.

NavigatorView and JHelpNavigator
The NavigatorView class defines a NavigatorView type and provides access to the information in a
<view> tag in a HelpSet file. A NavigatorView also provides a JHelpNavigator through its
create method. JHelpNavigator is the Swing class used in the JavaHelp system to capture the
presentation of a NavigatorView. A JHelpNavigator can be created directly, but more commonly it is
created implicitly through the create() method in a NavigatorView.

View-Specific Knowledge

Specific NavigatorView may have additional methods and fields that encode specific information on
the view type. For instance, both TOCView and IndexView provide a parse method that can be used to
parse a URL that conforms to the file format. These methods use a Factory class to provide access for
customizing the result of the parsing.

The separation of view data and its presentation means that it is possible to access the view data without
having to actually create the presentation. It also means that it is easy to modify the presentation without
having to duplicate some data-specific information; for example, by reusing the parsing methods.

Different Formats

The Help Navigator mechanism can also be used to provide access to meta-data that is in a "foreign" or
"legacy" format. This might enable an application to access information from legacy applications or an
alternate meta-data format such sitemap, or meta-data from the Library of Congress, or other library
system. This may be done by creating a new NavigatorView that can parse the "foreign" format but that
reuses the presentation from the JavaHelp JHelpNavigator .

A variation of this last case, the data is not stored anywhere but it is created dynamically. This is easily
acomplished by subclassing TOCView (for instance) and redefining the method getDataAsTree() to return
the data whenever invoked.

Different Presentations

A JHelpNavigator selects its presentation through the standard Swing method getUIClassID() to
indicate its ComponentUI class. A new JHelpNavigator that is not capable or willing to reuse an existing
ComponentUI needs to return an appropriate class value in getUIClassID() . If appropriate, this
ComponentUI may be a subclass of the standard ComponentUI classes

24JavaHelp 1.0 - Customization

(BasicTOCNavigatorUI.java , BasicIndexNavigatorUI.java and
BasicSearchNavigatorUI.java) with some methods redefined. A useful method to redefine is
setCellRenderer which permits to change the presentation details of the Tree in both TOC and Index
presentations.

Two Examples of Custom Views

The three standard Views included in JavaHelp 1.0 (TOCView, IndexView, SearchView) cover most
online documentation needs, but there are other situations where one might want to have custom views
and navigators. As a first example, the Java Tutorial could be used to illustrate the concept of a Help
Navigator. The Java Tutorial is an online document that describes the Java Platform. The tutorial is
organized into trails: groups of lessons on a particular subject. A version of the tutorial could take
advantage of a NavigatorView that supported the notion of a trail . Such a view could remember the
position within the trail, quickly reference examples within the trail, and navigate to other trails.

Another example is an API class viewer. Such a viewer was created for demonstration purposes and is
included in the reference implementation. This NavigatorView uses information collected from source
files that are annotated using the javadoc system. The traditional data generated by javadoc is
produced as HTML files. Static HTML indexes and trees are used to provide navigational information.
The result is useful but it is difficult to effectively navigate. The classviewer NavigatorView is customized
to dynamically display this information. A picture of an early version of the presentation is shown next:

In this example there are three navigational views: TOC, Index, and Search. Index is an index of all the
methods, classes, and packages, and Search provides a full-text search of all the javadoc information.
The TOC view uses the new classview NavigatorView. When a class is selected in the top pane of the
navigator, the JHelpNavigator determines if it has already loaded the metadata for that class. If not, it
presents the fields, constructors and methods in the bottom pane. When a method is selected, the
appropriate content file is presented in the JavaHelp system TOC pane. In this particular prototype, the
information presented is only that of the selected class but the navigator could easily provide access to
inherited information too.

25JavaHelp 1.0 - Customization

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/products/jdk/javadoc/

For this example, we use the new Doclet facility in JDK1.2 to generate the desired metadata.

Search Engines
The standard NavigatorView and JHelpNavigator search classes (javax.help.SearchView
and javax.help.JHelpSearchNavigator) provide an interaction with search engines via the
classes in the javax.help.search package. SearchView views may have an optional <engine>
attribute of their data tag indicating the specific javax.help.search.SearchEngine subclass to
use to perform searches. The default is com.sun.java.help.search.DefaultSearchEngine ,
which is the search engine included in the reference implementation.

The same view and presentation can be used with other search engines following the same protocol, by
naming the SearchEngine class in the <engine> attribute and making the class available.

Different view and or presentations of search can be provided using the standard customization
mechanisms for this. These may, or not, reuse the default search engine.

Key-Data Map
HelpSet provides a simple registry mechanism that provides per-instance or global key-data mapping.
The mechanism can be accessed via the setKeyData , setDefaultKeyData and getKeyData
methods. This mechanism is used by the JHelpContentViewer to determine the EditorKit to use for
a given MIME type, and also to determine the HelpBroker to use in the
HelpSet.createHelpBroker() method.

The per-HelpSet registry will be instantiated from the contents of the <impl> section of the HelpSet file
in the 1.0 version of the JavaHelp system.

Using new URL protocols
Another mechanism for extending JavaHelp is by providing new protocols that can, for example, provide
SGML -> HTTP translation. This is very easy to do in a Java application by defining a few simple URL
classes; it is not possible to do in an Applet in JDK1.1 since there is no support for downloadable URL
protocols.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:46:01 MDT 1999

26JavaHelp 1.0 - Customization

JavaHelpTM 1.0 - JavaBeans Help data

Copyright 1998-1999 Sun Microsystems

Introduction
There are different types of help information associated with JavaBeans components.

Help information about the JavaBeans component to use by a "container"
Help information used by the JavaBeans component itself (for example, a popup)
Help information to be attached to a JavaBeans component instance

In the first case, information is associated with the presence of the JavaBeans component in its container.
For example, this is what happens when a JavaBeans component is added to a Builder tool palette, or
when a new JavaBeans component plug-in is dropped into JMAPI.

The second case occurs at runtime within a JavaBeans component. For example, the JavaBeans
component is a complex plug-in. While in a popup window for that plug-in, we want to display the help
information in a form that is consistent with whatever display presentation the container uses for help
information.

The third case occurs when a JavaBeans component is instantiated into a container and it is given some
semantics by customizing it and by attaching to events and actions. In this case we want an easy
mechanism to assign help data that describes the semantics so that a gesture can retrieve that help data.

The mechanisms described in the following section pertain to the first two cases. The third situation is
covered by the mechanisms for context-sensitive help and other, more ad hoc, mechanisms.

Help Information
The needs of the two cases described above require the association and retrieval of two pieces of
information per JavaBeans component:

27JavaHelp 1.0 - JavaBeans Help data

http://java.sun.com/beans

helpSetName : the name of a HelpSet that contains help information
helpID : a home ID within that HelpSet to use to present data

Having two different pieces of information (cf. having the HelpID be a fixed value) provides for
additional packaging flexibility and leads to a nice default convention, and useful default values are
important to keep within the JavaBeans design philosophy. The default for this information depends on
whether the name of the JavaBeans component is in the unnamed package or not:

Name is of the form OurButton:

helpSetName : add a Help.hs to name: OurButtonHelp.hs
helpID : add ".topID" to name: OurButton.topID

If the name is of the form sunw.demo.buttons.OurButton:

helpSetName : drop the shortname, replace ’.’ with ’/’ and add a ’/Help.hs’:
sunw/demo/buttons/Help.hs.
helpID : add ".topID" to name: sunw.demo.buttons.OurButton.topID:

Mechanism
The proposed mechanism is to use two optional String-valued BeanInfo attributes with the names
suggested above: "helpSetName", and "helpID". This mechanism is relatively simple, does not require the
JavaBeans component to be initialized, and it is consistent with other uses of BeanInfo attributes (e.g.
Swing’s use for container information).

To simplify following the default rules described above, we add two methods to a JavaHelp class that take
a Class object and return the desired Strings after consulting the appropriate methods.

An Example:
Below is the buttons example from the BDK , modified to provide Help information. This example uses
the default values for HelpSetName and HelpId:

Manifest and JAR File

The manifest file just changes to include the Help files; it would look like:

 // Beans, Implementation Classes, and Gif images are as before

 // the HelpSet file
 Name: sunw/demo/buttons/Help.hs

 // The Map file
 Name: sunw/demo/buttons/help/Map.html

 // Actual html data - in this case all in one file

28JavaHelp 1.0 - JavaBeans Help data

http://java.sun.com/beans/software/examples.html#OurButton

 Name: sunw/demo/buttons/help/Buttons.html

 // View data
 Name: sunw/demo/buttons/help/toc.xml

 Name: sunw/demo/buttons/help/index.xml

 Name: sunw/demo/buttons/help/search.dat

The HelpSet File

All the HelpSet files are the same. The HelpSet file is quite simple (see below for details on the classes
view).

 # ...

 # map URL
 <homeID>sunw.demo.buttons.topId</homeID>
 <map>
 <data>!/sunw/demo/buttons/help/Map.html</data>
 </map>

 # data views
 <view>
 <name>TOC</name>
 <label>Table of Contents</label>
 <type>javax.help.TOCView</type>
 <data>!/sunw/demo/buttons/help/toc.xml</data>
 </view>

 <view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>!/sunw/demo/buttons/help/index.xml</data>
 </view>

 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <engine>com.sun.java.help.search.DefaultSearchEngine</engine>
 <data>!/sunw/demo/buttons/help/search.dat</data>
 </view>

29JavaHelp 1.0 - JavaBeans Help data

The Help Map

In this simple example, the Map just handles the top IDs, plus a global introduction to the buttons
package.

 sunw.demo.buttons.topId="!/sunw/demo/buttons/help/Buttons.html#Top"
 sunw.demo.buttons.OurButton.topId="!/sunw/demo/buttons/help/Buttons.html#OurButton"
 sunw.demo.buttons.ExplicitButton.topId="!/sunw/demo/buttons/help/Buttons.html#ExplicitButton"
 sunw.demo.buttons.OrangeButton.topId="!/sunw/demo/buttons/help/Buttons.html#OrangeButton"
 sunw.demo.buttons.BlueButton.topId="!/sunw/demo/buttons/help/Buttons.html#BlueButton"

An Alternative Arrangement
A alternative arrangement would have been to place all the help data in a single nested JAR file. For
example:

Manifest and JAR file

 // The Beans, Implementation Classes and Gifs as before

 // The Help data
 Name: sunw/demo/buttons/Help.hs

 // The rest of the Help data
 Name: sunw/demo/buttons/help.jar

The HelpSet File
The Help file has to change a bit:

 # no property requests

 # map URL
 <homeID>sunw.demo.buttons.topId</homeID>
 <map>
 <data>!/sunw/demo/buttons/help.jar!/Map.html</data>
 </map>

 # data views
 <view>
 <name>TOC</name>
 <label>Table of Contents</label>
 <type>javax.help.TOCView</type>
 <data>!/sunw/demo/buttons/help.jar!/toc.xml</data>
 </view>

 <view>
 <name>Index</name>
 <label>Index</label>

30JavaHelp 1.0 - JavaBeans Help data

 <type>javax.help.IndexView</type>
 <data>!/sunw/demo/buttons/help.jar!/index.xml</data>
 </view>

 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <engine>com.sun.java.help.search.DefaultSearchEngine</engine>
 <data>!/sunw/demo/buttons/help.jar!/search.dat</data>
 </view>

The Help Map
In this example, we can choose to use exactly the same Help map as what we used in the previous
arrangement.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:42:45 MDT 1999

31JavaHelp 1.0 - JavaBeans Help data

JavaHelpTM 1.0 - Context Sensitive Help

Copyright 1998-1999 Sun Microsystems

Context-Sensitive Help
Context-sensitive help in the JavaHelp system is organized around the notion of the ID->URL map
referred by the <map> section of a HelpSet file. The key concept is that of the Map.ID which is
comprised of a String/HelpSet instance pair. The String is intented to be unique within the local map of
the HelpSet. This is very important when considering HelpSet merging, otherwise IDs would be required
to be unique over all HelpSets that might ever be merged.

There are three parts involved in assigning Context Sensitive Help to an application:

1. Define the appropriate String ID->URL map,
2. Assign an ID to each desired visual object,
3. Enable some user action to activate the help.

Defining the ID->URL map

The Map interface provides a means for associating IDs (HelpSet.string) with URLs. One such map is
constructed from one or more map files that provide a simpler "String ID" to URL mapping, with the
HelpSet being given either explicitly or implicitly.

JavaHelp has two classes that implement the Map interface: FlatMap and TryMap . A FlatMap does
not support nesting of other maps into it, while a TryMap does. A FlatMap is a simple implementation
while TryMap should support inverse lookups (for example, getIDFromURL) more efficiently. The
implementation of TryMap JavaHelp 1.0 is not particularly efficient.

Both FlatMap and TryMap have public constructors. The constructor for FlatMap takes two
arguments: the first one provides a URL to a property file providing a list of String and URL pairs; the
second argument is a HelpSet. The HelpSet is used together with each String-URL pair to create the actual
Map.ID objects that comprise the FlatMap . The constructor for TryMap has no arguments: the Map is

32JavaHelp 1.0 - Context-Sensitive Help

created empty and other Maps are added (or removed) from it.

The Map interface can also be implemented by some custom class. One such class could be used to, for
example, programatically generate the map.

Assigning an ID to Each Visual Object

The next step is to assign to each desired GUI object an ID that will lead to the desired help topic. There
are two mechanisms involved: an explicit ID, either a plain String, or a Map.ID , is assigned to the GUI
object; and there is a rule that is used to infer the Map.ID for an GUI object based on its container
hierachy.

The two basic methods to assign IDs are setHelpIDString(Component, String) and
setHelpSet(Component, String) . If both are applied to a Component, then a Map.ID is
assigned to that Component. If only setHelpIDString() is applied, then the HelpSet instance is
obtained implicitly, as indicated later. A method overload is provide for MenuItem objects.

These methods take a Component as an argument. The implementation may vary depending on whether
the argument is a JComponent or a plain AWT Component.

The methods getHelpIDString(Component) and getHelpSet(Component) recursively
traverse up the container hierachy of the component trying to locate a Component that has been assigned a
String ID. When found, the methods return the appropriate value. As before there is also an overloaded
method for MenuItem .

Enabling a Help Action

The final step is to enable for some action to trigger the presentation of the help data. CSH currently
provides several ActionListener classes that can be used:

Name Description

DisplayHelpFromFocus() Locate the Component currently owning the focus, then find
the ID assigned to it and present it on the HelpBroker. This
is to be used by "Help" keys.

DisplayHelpAfterTracking() Start tracking events until a mouse event is used to select a
Component, then find the ID assigned and present it. This is
to be used by a "What’s this" type of interface.

DisplayHelpFromSource() Find the ID assigned to the source of the action event and
present it.

In addition, HelpBroker also provides some convenience methods that interact with these
ActionListeners:

33JavaHelp 1.0 - Context-Sensitive Help

Name Description

enableHelpKey(root, stringID,
helpSet)

Set the ID and helpset of root which will act as the
default help to present, then register an appropriate
ActionListener to be activated via the "Help" key.
DefaultHelpBroker uses
CSH.DisplayHelpFromFocus as the
ActionListener.

enableHelp(Component,
stringId, helpSet)

Set the ID and HelpSet to the component. This
information is usually recovered either using the
"Help" key or through the
DisplayHelpAfterTracking class.

enableHelpOnButton(Component,
stringId, helpSet)

Set the ID and HelpSet to the component, which
must be a "Button". When the button is "pressed" the
Help information given in the arguments will be
presented.

Since these methods are from a specific HelpBroker, if a HelpSet is not associated with the GUI object
then the HelpSet of the HelpBroker will be used automatically.

Help Support for JDialogs

It is often useful to associate help information with dialog boxes using a Help button. Ideally the standard
javax.swing.JOptionPane would have direct support for this but, due to timing constraints this
was not possible. Expect full support for this feature in a forthcoming version of Swing.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 19:15:49 MDT 1999

34JavaHelp 1.0 - Context-Sensitive Help

JavaHelpTM 1.0 - Content Search

Copyright 1998-1999 Sun Microsystems

Search API
JavaHelp provides full-text searching of help topics. Development of full-text searching raised interesting
questions, both in the implementation and in the specification. For example, whether the search database
is created before or during queries, and how the format of the search database is specified.

The search API javax.help.search.* can be used to create and query the search database. The
default NavigatorView, SearchView knows how to interact with any subclass of SearchEngine. Similarly
the search database can be created through the IndexBuilder class.

One of the benefits of the javax.help.search API is that it enables the use of search engines that
require moderatedly complex database formats without the difficult and constraining task of specifying
these formats in full. One such search engine is the one provided in Sun’s reference implementation.

The intention of the javax.help.search package is to provide insulation between client and
customers of a full-text search database in the context of the javax.help package. It is important to
emphasize that although the javax.help.search API is intented to be of general applicability, it is
not intented to be a replacement for more powerful query mechanisms.

Search Database Creation
Search databases are created through instances of IndexBuilder . The parsing of each file is specific to
its MIME content; this is encoded in the notion of an IndexerKit. An indexer kit provides a parse()
method that knows how to parse the specific MIME type and call back into the IndexBuilder instance
to capture the information of this source.

When capturing search information there are a number of parameters that you can configure using a
ConfigFile:

35JavaHelp 1.0 - Content Search

Change the path names of the files as they are stored in the search database. This is useful when you
create the search database using paths to topic files that are different from the paths the help system
will later use to find them.
Explicitly specify the names of the topic files you want indexed
Specify your own list of stopwords

Stopwords

You can direct the JavaHelp system full-text search indexer to exclude certain words from the database
index--these words are called stopwords. The default stopwords are:

a all am an and any are as
at be but by can could did do
does etc for from goes got had has
have he her him his how if in
is it let me more much must my
nor not now of off on or our
own see set shall she should so some
than that the them then there these this
those though to too us was way we
what when where which who why will would
yes yet you

ConfigFile Directives

A config file may contain the following directives

Directive Description

IndexRemove path Remove a path that is a prefix to the given files

IndexPrepend path Prepend path to the names of the given files.

File filename Request that the filename be processed

StopWords word, word,
word...

Set the stopwords to the ones indicated

StopWordsFile filename
StopWordsFile must contain a list of stopwords, one stopword
per line.

Search Database Use
The javax.help.search package is used in JavaHelp 1.0 by SearchView . This view expects an
engine property that specifies the name of the subclass of javax.help.search.SearchEngine to
use when making queries. The default value of this property is
com.sun.java.help.search.SearchEngine .

36JavaHelp 1.0 - Content Search

The steps involved in using the search engine from a SearchView are:

A SearchView is instantiated, for example, when the default HelpBroker for the HelpSet is created.
When the first query is made, the engine property of the view is obtained to determine what
SearchEngine to instantiate. The data and other attributes are passed to this instance.
For a query, a SearchQuery instance is obtained, then the query is passed to it.
Hits found are either obtained directly, or they are generated as events.

More details may be added in the next iteration of the specification.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:46:00 MDT 1999

37JavaHelp 1.0 - Content Search

JavaHelpTM 1.0 - Merge

Copyright 1998-1999 Sun Microsystems

Introduction

JavaHelp provides a mechanism for merging HelpSets. For example, when two indexes are merged, the
second index is appended to the first index. Constituent HelpSets can be dynamically removed from the
merged HelpSet, even while the merged HelpSet is displayed. When HelpSets are merged there is always
a master HelpSet into which other HelpSets are marged.

In addition, a HelpSet file can use the <subhelpset> tag to statically include HelpSets, this behavior is
identical to add ing the subhelpset to the enclosing HelpSet, except that if the subhelpset file does not
exist, it is ignored.

Here are some examples where merging might be appropriate:

An application suite may be comprised of a collection of constituent applications. As constituent
applications are purchased and installed, their help information can be merged with help information
from the other applications in the suite.

A Builder tool uses JavaBeans to construct programs. Each JavaBean provides help information
about its functionality. The help information of the constituent JavaBeans can be listed in the TOC, in
the index, and be accessible to searches.

When JavaBeans are used to dynamically extend the functionality of an application (sometimes this
functionality is described as plug-in) the JavaBeans contain help information that conforms to the
nature of the application. This help information can be meaningfully merged before being presented
to the user.

38JavaHelp 1.0 - Merge

The API
The basic API comprises the HelpSet.add(HelpSet) method, and its corresponding
HelpSet.remove(HelpSet) method. These methods fire HelpSetEvent events to the
HelpSetListeners that have registered interest in them. This is how the ComponentUIs for TOC,
Index, and Search views are notified of these changes and react to them.

When a HelpSet A is added to a HelpSet B, all the views in A are compared to the views in B; if a view in
A has a name that is the same as another view in B, then it is considered for merging into B, otherwise it is
not.

When considering merging a view Va into a Vb the following happens:

The navigator Nb of Va is obtained.

Nb.canMerge(Va) is invoked to determine if the views can be merged.

If then can be merged, then Nb.merge(Va) is invoked.

If later the HelpSet A is removed from HelpSet B:

Nb.remove(Va) will be invoked.

Merging TOCs

TOCView and JHelpTOCNavigator implement a merging rule that allows any TOCView with the
same name to be merged. The resulting presentation adds the new TOC data as the last subtree of the top
level of the original TOC.

A TOCView may have no <data> tag; such a view shows as an empty tree. This is useful for what is
sometimes called "dataless" master views into which other views can merge.

Merging Indices

IndexView and JHelpIndexNavigator implement a merging rule that allows any IndexView with
the same name to be merged. The resulting presentation adds the new index data as the last subtree of the
top level of the original index. No attempt to sort the data is provided in the standard types.

An IndexView may have no <data> tag; such a view shows as an empty tree.

Merging Full-Text Search Databases

SearchView and JHelpSearchNavigator implement a merging rule that allows any SearchView
with the same name to be merged. The resulting presentation adds the SearchEngine from the new
view to the previous list--query results from all the SearchEngine s are collated and presented together.

39JavaHelp 1.0 - Merge

A SearchView may have no <data> tag; such a view produces no matches against any queries.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:46:00 MDT 1999

40JavaHelp 1.0 - Merge

JavaHelpTM 1.0 - Change History

Copyright 1998-1999 Sun Microsystems

Changes from 0.90 to 1.0
This is the final set of changes so they are documented in more detail than the other sets.

Refined the documentation of several methods. Fully defined when NullPointers are allowed and the
resulting actions.
The method getIcon in BasicSearchCellRenderer was made private.
The method getCurrentNav was added to BasicHelpUI and HelpUI.
The method setNavigatorDisplay was removed from HelpUI and BasicHelpUI.
The method reloadData was changed to private in BasicTOCNavigatorUI, BasicIndexNavigatorUI,
and BasicSearchNavigatorUI.
The method installLookAndFeelDefaults was changed to package in HelpUtilities.
Changed occurances of IllegalArgumentException to throw NullPointerException, except for classes
that were copied from Swing.

Changes from 0.70 to 0.90
This is intented to be the last set of changes so they are documented in more detail than the other sets.

Package name is now javax.help, rather than javax.javahelp. This is consistent with other packages in
the Java Platform.
Adjusted examples so they follow the Reference Implementation, in particular, the package names in
the RI have also changed from *.javahelp.* to *.help.* and the default search database directory has
changed from JavaHelpSearch to JavaHelpSearch.
Better use of XML:

Moderate cleanup of HelpSet format to improve consistency and to better employ XML
features, including Processing Instructions and empty tags.
Removed <impl> tag from the HelpSet (use PIs instead).

41JavaHelp 1.0 - Change History

Dropped claim that the keydata registry of HelpSet would be initialized from the <impl>
section.
Map files are now described as XML files.
All XML formats (HelpSet, TOC, Index, Map) are now formally described using a DTD. DTDs
are versioned to allow for future changes.

Standard Views now can be "empty" (i.e. without any <data>; this is useful when merging HelpSets)
and clarified that non-existing subHelpSets are not to give an error.
The DialogSupport class is no longer in the specification as it had too many limitations. We are
planning direct support for Help in a future version of Swing’s JOptionPane.
CSH methods now accept both AWT Components as well as JComponents.
The default CSH listener classes moved from DefaultHelpBroker to CSH and changed their name.
The enabling methods on HelpBroker were modified to work on AWT components and some also
changed their names.
Refinements to the API to either fix bugs or improve reusability of functionality:

TOCView and IndexView now include a getDataAsTree() method.
Small changes in HelpSet to allow the creation of HelpSets programatically.
Cleaned up some more the parsing interface used in HelpSet, TOCView and IndexView.
Normalized a number of exceptions in corner cases (like when a null is passed in, etc).
Added removeNavigator() to several UI classes, setCellRenderer() to the
ComponentUI classes, and merge() and remove() to BasicSearchNavigatorUI .
Made some additional methods public or protected so they can be reused.
Promoted UnsupportedOperationException from an inner to a top-level class.

Changes from 0.50 to 0.70
Significantly improved support for internationalization and localization.
We no longer claiming to comply with RDF, although we are still trying to be consistent with it.
Created the notion of a NavigatorView to provide additional flexibility.
Added the notion of Factories to access TOC, Index, and HelpSet parsers, including errors.
Added support for a <subhelpset> tag in HelpSet files.
Added a method to HelpUtilities to better support jar: in JDK1.2.
Switched to using <OBJECT> tags instead of <APPLET> tags
<OBJECT> tags are no longer part of the specification
Clarified the role of the search engine.
Added a section to this specification about the reference implementation.
Classified Scenarios as a companion doc to the specification.
Changed the package name of the search engine in the reference implementation.

Changes from 0.33 to 0.50 (unpublished but implemented in
jhEA2)

42JavaHelp 1.0 - Change History

Added proper XML prefix to XML-based formats (TOC, Index, HelpSet).
Now supports both JDK 1.1 and JDK 1.2 platforms.
Removed mandated protocols from specification; instead we rely on the underlying platform.
Added HelpBroker, Context-Sensitive Help, Search API.
Dropped format from Views; type is enough.
HelpSet nest (for merging) and IDs are now scoped within them.

Changes from 0.30 to 0.33
First public draft.
Improved the Beans proposed mechanism
Cleaned up some the Merge examples
Clarified some activation issues
Added some references to the forthcoming Search Database Spec.

Changes from 0.20 to 0.30
Improved pictures in the Scenarios. Improvements to the language of the document.
The Navlet API was folded into JHelpNavigator and cleaned up
Improvements on merging of HelpSets.
Added initial description of DB format.
Added Changes.html file.
Added an intro to the JavaSoft API evolution process in preparation for a more public draft release.

Changes from 0.10 to 0.20
Added a number of JavaHelp usage scenarios.
Improved on applicability of map files using jar: format.
Added navigational views.
Added an overview to the spec.
First cut at JavaBeans support.
Provided examples of code fragments.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:56:07 MDT 1999

43JavaHelp 1.0 - Change History

JavaHelpTM 1.0 - JavaHelp Class Structure

Copyright 1998-1999 Sun Microsystems

Packages
JavaHelp is a standard extension for JDK1.1 and JDK1.2. The API is defined in the javax.help
package, with the exceptions of the search API classes, which are defined mainly in the javax.help
package, but other packages are also involved. The complete list is:

Package Description

javax.help Main package

javax.help.event Event & Listener classes

javax.help.plaf Interface to the ComponentUI classes

javax.help.plaf.basic Basic look and feel; currently no specific PLAF classes are needed

javax.help.resources Localization classes.

javax.help.search search classes.

An implementation of the extension may also include some implementation classes that are not intented to
be used directly. The Reference Implementation also includes additional classes of utility to Help authors.

API Structure
This section describes the general principles behind the API classes. More details are available in the
javadoc information on the classes. The reference implementation also provides code fragments
exemplifying the use of these classes.

44JavaHelp 1.0 - The JFC Architecture

http://java.sun.com/products/jdk/1.1/

As indicated in Overview.html, the API classes in javax.help are conceptually structured in several
collections. The different collections are addressed to different tasks and users. The boundaries between
some of these collections are not sharp, but the classification helps to reduce the number of concepts, and
actions, needed to perform simple tasks.

Basic Content Presentation
Complete Access to JavaHelp Functionality
Swing classes
Full-Text Search

Basic Content Presentation

Some applications only are interested in presenting some help information to the user, minimizing the
interaction between the help author and the application developer. The basic actions to perform are:

Locating a HelpSet, perhaps after localization;
Reading that HelpSet, including any related data, like Map files, TOCs, Indices, and Search database;
and
Visually presenting this HelpSet.

The abstraction of a HelpSet is javax.help.HelpSet, while the abstraction of its visual presentation is
javax.help.HelpBroker. A HelpBroker provides for some interaction with the presentation regardless of
the actual visual details; the default presentation is DefaultHelpBroker . An application can provide
on-line help using only these two classes.

Sub-HelpSets listed in the HelpSet file using the <subhelpset> tag will be merged automatically before
presenting them to the user.

These two classes (an ancillary classes, like Exception classes) do not have any dependency on Swing for
their definition, although DefaultHelpBroker depends on Swing for its implementation.

Detailed Control and Access

The HelpBroker interface provides substantial control of the presentation of a HelpSet, without leaking
unwanted GUI details of the presentation. For example, this interface can be used to interact with the
two-pane default presentation of the reference implementation, as well as to interact with some
presentation embedded within the application. Additionally, since the HelpBroker does not use any Swing
types or concepts, it does not require Swing for its implementation. But some applications will want
access to such details as the map from ID to URLs. JavaHelp provides classes for this.

Extensibility
Content extensibility is described through a NavigatorView which provides access to some context
information plus a way of presenting this information. TOCView, IndexView , and SearchView are
standard views for Table Of Contents, Index, and full-text search.

45JavaHelp 1.0 - The JFC Architecture

The standard views yield standard JHelpTOCNavigator , JHelpIndexNavigator , and
JHelpSearchNavigator Swing components. The standard views also provide access to the content;
this access uses subclasses of TreeItem .

New views can be added; for instance a new TOC presentation can be obtained by subclassing TOCView
and just changing the JHelpNavigator returned by it. Another view may keep the same JHelpNavigator but
use a format for the encoding of the view data (perhaps even generating the data dynamically); this is done
by redefining the getDataAsTree method. The presentation of new Views can be derived from the
standard ones by subclassing.

Swing components
JavaHelp provides a collection of Swing components that are used to implement the DefaultHelpBroker
and can also be used directly, as in embedded help. The components follow the standard MVC from
Swing. There are two main models: HelpModel and TextHelpModel .

HelpModel models changes to the location within a HelpSet; components that want to respond to these
changes should listen to events originating within the model - this is how synchronized views work. The
location within the model is represented by objects of type Map.ID ; these correspond to a String (an ID),
and a HelpSet providing context to that ID. A HelpSet needs to be explicitly given (in general) because of
the ability of merging HelpSets. TextModel provides additional information when the content is textual.
A TextModel can queried for the current highlights, which a client may present visually. The
DefaultHelpModel is the default model implementing both models.

JHelpContentViewer is the Swing component for the content, while context corresponds to several
subclasses of JHelpNavigator . JHelp is a common grouping of these classes into synchronized
views of content.

The basic structure of the Swing classes is shown in the next figure; for additional information about the
Swing classes check the Swing Connection home page

46JavaHelp 1.0 - The JFC Architecture

A Swing control acts as the main interface to developers. All ComponentUI objects for a particular look
and feel are managed by a JFC object called UIFactory . When a new Swing component is created, it
asks the current UIFactory to create a ComponentUI object. Vendors or developers can ship different
ComponentUI’s to suit their specific needs.

A Swing control then delegates the tasks of rendering, sizing and performing input and output operations
to the ComponentUI . The ComponentUI’s installUI and deinstallUI methods add behavior
and structure to the raw Swing component by adding listeners, setting the layout manager, and adding
children.

The Swing model defines the component’s non-view-specific state. The Swing component communicates
changes to the model and listens (through listeners) to the model for changes. Finally, the model provides
data to the ComponentUI for display.

The ComponentUI objects in the JavaHelp Swing classes are currently fully defined in terms of the other
components, hence, there are only javax.help.plaf.basic classes, and none of the other PLAF
packages are needed.

Context Sensitive Help
JavaHelp supports a Map between identifiers and URLs. FlatMap and TryMap are two
implementations; sofisticated users can provide their own implementations to satisfy different
requirements (for example, the map data may be generated dynamically). The main class used to associate
specific content with graphic objects is CSH.

47JavaHelp 1.0 - The JFC Architecture

Search
JavaHelp supports a standard full-text search view and navigator. The view interacts with a search engine
through the types in the javax.help.search package. The reference implementation provides a
search engine implementing these interfaces but others can also be used; the specific search engine used is
part of the information given to the search view. By doing this separation we provide the capability of
full-text searching while not imposing specific formats.

The search package has not conceptual dependencies on any other portions of JavaHelp, and it can be used
independently. The Reference Implementation provides one such implementation packaged in a JAR file
that depends only on the basic platform.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:46:01 MDT 1999

48JavaHelp 1.0 - The JFC Architecture

JavaHelpTM 1.0 - Scenarios

Copyright 1998-1999 Sun Microsystems

Introduction
This document contains a number of scenarios that illustrate ways the JavaHelp system can be used to
provide online help for different types of Java programs in a variety of network environments. These
scenarios attempt to illustrate the flexibility and extensibility of the JavaHelp system.

Scenarios are presented in four areas:

Invocation
mechanisms

Scenarios that describe different ways that the JavaHelp system can be invoked
from applications

Presentation and
deployment

Scenarios that describe different ways that the JavaHelp system can be used to
present help information. These scenarios also illustrate different methods for
deploying the JavaHelp system classes and help data.

Search Scenarios that describe different ways that full-text searches of JavaHelp system
information can be implemented

Packaging Scenarios that describe different ways that JavaHelp system data can be
encapsulated and compressed using Java Archive (JAR) files

Merging
HelpSets

Scenarios that describe ways that JavaHelp system data can be merged. You can
use the merge functionality to append TOC, index, and full-text search
information from one or more HelpSets to that of another HelpSet.

Code examples complementing these scenarios can be found in the reference implementation release
available at http://java.sun.com/products/javahelp.

49JavaHelp 1.0 - Scenarios

Invocation Mechanisms
These scenarios describe the different ways the JavaHelp system can be invoked.

Menus and Buttons

The JavaHelp system is often invoked from an application when a user chooses an item from a Help
menu, clicks on a Help button in an application GUI, or uses one of the context-sensitive help activation
gestures to request help on a GUI component.

The JavaHelp system provides a simple interface for requesting the creation of a help presentation by
requesting that a topic ID (identified by a string) be displayed. Topic IDs are associated with URLs in the
map file(s) mentioned in the HelpSet file.

For example, when coding a file chooser dialog box, a developer requests that the topic ID fc.help be
displayed when the Help button at the bottom of the dialog box is clicked. In the HelpSet file (or in some
cases the map file referred to in the HelpSet file) the ID fc.help is defined to be a file named
FileChooser.html using the following syntax:

<mapID target="fc.help" url="FileChooser.html"/>

Separating the specification of actual file names from the program code, provides content authors the
freedom to control the information that is associated with the topic ID.

Tooltips

A tooltip is a brief message presented to the user when the cursor remains over a button for an interval
longer than a given threshold.

Although tooltip information could be included in the JavaHelp system data, it will usually be delivered as
part of the application and will be co-located with the code.

Context-Sensitive Help

Context-sensitive help (sometimes included in the term What-is help) is help information that describes
graphical components in an application GUI. It is triggered by gestures that activate context-sensitive help
and then specify the component in question. See CSH.html for more details.

Helpers

Recent products are exploring the notion of a Helper, or an Assistant, an example is the assistant in MS’s
Office 97. A helper is a mechanism that reacts to state and state transitions in applications and provides
guidance and suggestions to the user. Such a mechanism requires significant close interaction between the
application and the information presented to the user. This is not directly supported in the 1.0 release of
the JavaHelp system.

50JavaHelp 1.0 - Scenarios

Presentation/Deployment Scenarios
The following scenarios illustrate different ways that the JavaHelp system can be used to present and
deploy Help information.

Information Kiosk

The "kiosk" scenario is one where documents are presented independent of an application.

An example on the Solaris platform is AnswerBook -- a technology used to display all of Sun’s
documentation online. All that is required is a help browser that can be launched to present and navigate
through the information.

In JDK1.2, a JAR file can indicate a containing Application class that will be invoked automatically by
the system (by passing it to a "java -jar" command).

Stand-Alone Application

The simplest scenario is one in which the Java application runs locally and accesses help data installed on
the same machine.

51JavaHelp 1.0 - Scenarios

The application requests the creation of a JavaHelp instance, loads the help data on it, and then interacts
with this instance, either by requesting the help information be presented and hidden, or by requesting a
specific topic (identified by an ID) be presented.

Network Application
When the help data is accessed across the network, the scenario is essentially the same -- the location of
the data is actually transparent.

52JavaHelp 1.0 - Scenarios

Embedded Help
Information can also be presented embedded directly in application windows. The JFC components that
implement the JavaHelp specification are embedded directly into the application frame. The application
can create its own customized presentation, by using the JFC components from the reference
implementation.

53JavaHelp 1.0 - Scenarios

Embedded help is inherently application-specific since the application controls where each of the
presentation UI components are located. The JavaHelp reference implementation is organized so that most
applications will be able to achieve their needs very easily.

Component Help

Many current applications are composed of a collection of interacting components. Examples range from
large applications like Netscape navigator (with plugins) to applications where JavaBeans components are
connected together using JavaScript or Visual Basic.

54JavaHelp 1.0 - Scenarios

The help information can be merged in different ways. For instance, the table-of-contents, index, and
full-text search information from each component may be displayed one after the other to create a new,
unified help system.

As HelpSets are loaded/unloaded into a JavaHelp instance, the information presented needs to be updated.
The JavaHelp system provides a flexible mechanism for merging this information.

A Help Server

In some cases, it may be necessary to separate the application from the process that presents the help
information. In this case the application process can make requests into a JavaHelp process (help server)
through an RPC mechanism (the RPC may be wrapped in a library and be invisible to the application
developer).

55JavaHelp 1.0 - Scenarios

The help server model is useful if the application is not written in Java and does not include a JVM. It
would also be useful for a suite of Java applications that can share a common help server.

Web Pages and Applets

The final scenario describes how the JavaHelp system is used from within web-based applications. In this
case an applet or some other triggering entity (perhaps a JavaScript event) on an HTML page creates a
HelpSet object and then invokes HelpSet.createJavaHelp() .

This scenario can have a number of variations. Here are a three:

In one case, the browser platform contains a customized implementation of the JavaHelp system.
This implementation may have been delivered with the browser, or it may have been downloaded by
the client into the CLASSPATH. The implementation may use the Swing HTML viewer, or, more
likely, it may use some the HTML viewer that comes with the Web Browser.

56JavaHelp 1.0 - Scenarios

Since the JavaHelp system is a Java "standard extension," it is possible that a fully-conforming JDK
browser may not have it in its CLASSPATH. In this case, if the HTML page refers to the standard
JavaHelp system implementation, the standard extension machinery will automatically download the
implementation and execute it. Since our implementation is quite small, this approach will often be
practical. Browsers may choose to provide some way of easily installing extensions downloaded
through this mechanism.

This situation is depicted in the next picture where, for variety sake, we have changed the help
presentation so the navigator is separate from the content.

57JavaHelp 1.0 - Scenarios

The corresponding APPLET tag may look something like this:

<APPLET
 CODE=javax.help.HelpButton
 ARCHIVE="JavaHelpDefault1_0.jar"
>
<PARAM
 NAME=HelpSet
 VALUE=MyHelp.JAR>
</APPLET>

In some cases, some client browsers may not have a fully-conformant Java Virtual Machine. In that
case we can use the Java Plug-in technology to request a compliant Java Virtual Machine. The
request may lead to a download request if the virtual machine is not available locally; once installed
later requests will proceed with no download step. Once the appropriate JVM has been started, the
situation is equivalent to the previous two steps. The following figure illustrates this:

58JavaHelp 1.0 - Scenarios

http://java.sun.com/products/plugin

The JavaHelp system provides mechanisms for extending navigational views and content displayers, the
classes providing this can be downloaded automatically using the standard classloader mechanisms of the
Java platform (e.g. using ARCHIVE or CLASSPATH).

Search Scenarios
The JavaHelp system supports an extensible full-text search mechanism using the extension framework
mechanism, plus a Search interface. The JavaHelp1.0 specification requires all implementations to support
some search types and formats. This mechanism can be used to support a number of different search
scenarios:

Client-side
search

The search database is downloaded from the server, then searched on the client

Server-side
search

The search database and search engine are located on the server

Stand-alone
search

The search database is included as part of the HelpSet and the search occurs in the
application

59JavaHelp 1.0 - Scenarios

Client-Side

In a client-side search, searching is done locally on the "client-side", but the search data originates on the
"server-side". This commonly occurs with web-based applications (applets). The help data usually resides
on the same server as the applet code. When a search is initiated the search data is downloaded from the
server, read into the browser’s memory, and searched. The content files are downloaded only when they
are presented.

Time is required for the search database to be downloaded during the initial search. Once downloaded the
data can be kept in memory or in a temporary file on the client machine. Once the database is
downloaded, searches are quite fast.

Server-Side

In a server-side search, both the search data and the content files are located on the server side; only the
results of the search are downloaded to the client.

60JavaHelp 1.0 - Scenarios

This is another option for applets. It permits developers to use a choice of commonly available search
engines and can provide quick start-up time (especially if the search engine is started ahead of time). On
the other hand, it requires additional administrative work to get the search engine installed. Note that this
approach works very well with Java servlets.

Stand-Alone

In a stand-alone search, all of the components are local (search engine, search database, help content).
From an implementation point-of-view, the stand-alone search is quite similar to the client-search except
that there is no need to cache the search data in memory or in local files.

61JavaHelp 1.0 - Scenarios

Note that help content files can be accessed locally and/or across a network.

Packaging Scenarios
The following diagrams represent typical packaging scenarios. These scenarios are intended to be
exemplary and are not exhaustive.

The first picture represents a project in which the map file is packaged together with most (all?) of the
content files. The "!" syntax is used to specify the URLs relative to the JAR where the map is located. The
HelpSet file is packaged outside of the JAR file, perhaps to simplify updates later on.

62JavaHelp 1.0 - Scenarios

In the following scenario, the map file and the JAR file are in different locations. This is probably not a
common scenario, but is shown to illustrate packaging flexibility.

63JavaHelp 1.0 - Scenarios

In the final scenario, the HelpSet file is bundled in the JAR file with the rest of the JavaHelp system data.

64JavaHelp 1.0 - Scenarios

The advantage of this arrangement is that all the URLs are relative to the base URL of the HelpSet file,
and that there is no need to mention the jar: protocol within any JavaHelp system file. This JAR, when
placed in a CLASSPATH, permits a JDK1.1 application to refer to the HelpSet within the JAR file
transparently. A similar situation occurs with Applets, when the JAR file is listed in the ARCHIVE
attribute.

Merge Scenarios
The JavaHelp system provides a mechanism for merging HelpSets. You can use the merge functionality to
append TOC, index, and full-text search information from one or more HelpSets to that of another
HelpSet.

An example of where this functionality might be useful is in an application suite. The application suite
may be comprised of a collection of constituent applications. As constituent applications are purchased
and installed, their help information can be merged with help information from the other applications in
the suite.

65JavaHelp 1.0 - Scenarios

In the following scenario an application suite is comprised of three possible suite components. The help
data for each component in the suite is delivered as its own HelpSet. The suite is shipped with a master
HelpSet that lists the subcomponent HelpSets. When the HelpSet object for the suite HelpSet file is
created, each subcomponent HelpSet file (specified by means of the <subhelpset> tag) is read to create
HelpSet objects that are then merged into the containing HelpSet. Subcomponent HelpSet that are not
installed are ignored.

For more information about merging see Merge in the specification or "Merging HelpSets" in the
JavaHelp System User’s Guide.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:46:03 MDT 1999

66JavaHelp 1.0 - Scenarios

JavaHelpTM 1.0
JavaHelp System 1.0 Reference Implementation

Copyright 1998-1999 Sun Microsystems

JavaHelp System 1.0 Reference Implementation
Sun’s reference implementation of the JavaHelp system implements the the JavaHelp system specification
and supports additional useful features that are not appropriate for inclusion in the specification at this
time. Some of these features may move to the specification unchanged, others may be replaced by
equivalent or more powerful features in future versions of the specification, and others may never show up
in the specification. In all cases, these features will be supported in future versions of the reference
implementation and their presence can be assumed when writing content targeted to this implementation.

The latest release available at the time of writing is the FCS release, released in April 1999. The FCS
release implements this version of the specification. This specification is also supported by javadoc API
documents.

Sun’s reference implementation provides a search engine that can be used to create and access a search
database created from HTML-base topic files. The reference implementation also supports lightweight
AWT Java Components that can be embedded in HTML pages using the <OBJECT> tag. Two example
components are provided: one component provides HTML popup functionality, the other provides in-line
glossary definitions.

Information about the JavaHelp system reference implementation as well as other JavaHelp system
information is available at http://java.sun.com/products/javahelp .

HelpBroker

The HelpBroker created by default upon invocation of the createHelpBroker() method of
HelpSet is a DefaultHelpBroker.

67JavaHelp 1.0 - The JavaHelp 1.0 Reference Implementation

Search Engine

The reference implementation includes a com.javax.help.search.DefaultSearchEngine
search engine. This search engine uses a single data attribute that is a relative URL that specifies the
directory that contains the search database. Multi-word queries are supported and are interpreted using a
relaxation algorithm described in Relaxation Searching.

The implementation of the search engine is independent and does not depend on the rest of the JavaHelp
system. The client classes do not depend on Swing, the classes that create the search database (the
indexer) depend only on the Swing parser for the HTML IndexerKit.

Java Components in <OBJECT> Tag

The reference implementation supports a powerful <OBJECT> tag. In the reference implementation the
CLASSID that denotes the class name is used to instantiate the class. The result is expected to be a
lightweight AWT Component. This class is interpreted as a JavaBeans component --the <PARAM> tag
associated with the <OBJECT> tag is used to provide NAME/VALUE pairs. Each NAME is interpreted as
the name of a String property of the JavaBeans component and the value is assigned to it.

If the created Component supports the ViewAwareComponent , then the
javax.swing.text.View is passed to the object through a call to setViewData . This mechanism
is very powerful and provides access to much useful information, for example, the URL to the document
where the <OBJECT> tag is present. See the documentation about the Swing text package for more
details.

Launcher Application

A simple application (hsviewer) that can be used to create a HelpBroker on a given HelpSet is included
in the FCS release. The hsviewer is described in the reference implementation release documentation.

Packaging

The reference implementation includes the following JAR files in the FCS release:

JAR file Description

jh.jar Client-side JAR. Includes all default types, and the client-side search engine.

jhall.jar Complete JAR. Like jh.jar but also includes the indexer classes.

jhbasic.jar Minimal client-side JAR. Includes all default types except SearchView.

jhtools.jar Tools JAR. Includes the indexer and search classes, as well as a simple launcher
class.

jsearch.jar Search JAR. Includes only the Search classes, both indexer and the search classes.

68JavaHelp 1.0 - The JavaHelp 1.0 Reference Implementation

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 19:17:03 MDT 1999

69JavaHelp 1.0 - The JavaHelp 1.0 Reference Implementation

JavaHelpTM 1.0 - Java Components

Copyright 1998-1999 Sun Microsystems

The reference implementation has two JComponents that can be used in HTML pages

Secondary
Window

Presents a secondary window for presentation of supplementary HTML-based
information

PopUp Presents a popup for presentation of supplementary HTML-based information

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 19:08:36 MDT 1999

70JavaHelp 1.0 - Java Components

JavaHelpTM 1.0 - Relaxation Searching

Copyright 1998-1999 Sun Microsystems

Introduction

The default search engine in com.sun.java.help.search.DefaultSearchEngine uses an
effective natural language search technology that not only retrieves documents, but locates specific
passages within those documents where the answers to a request are likely to be found. The technology
involves a conceptual indexing engine that analyzes documents to produce an index of their content and a
query engine that uses this index to find relevant passages in the material.

Relaxation Ranking

The query engine makes use of a technique called "relaxation ranking" to identify and score specific
passages of material where the answer to a request is likely to be found. This is referred to as "specific
passage retrieval" and is contrasted with the traditional "document retrieval" which retrieves documents
but leaves the user with the task of finding the relevant information within the document (or finding that
the desired information is not in the document after all).

The relaxation ranking algorithm looks at the search terms and compares them to occurrences of the same
or related terms in the documents. The algorithm attempts to find passages in the documents in which as
many as possible of the query terms occur in as nearly as possible to the same form and the same order,
but will automatically relax these constraints to identify passages in which not all of the terms occur or
they occur in different forms or they occur in different order or they occur with intervening words, and it
assigns appropriate penalties to the passages for the various ways in which a passage departs from an
exact match of the requested information. Passages with words in the same order as the search terms are
scored better than passages with the matching words in some other order. Passages with matching words
in any order are scored better than passages which do not contain matches for all of the requested terms.

71JavaHelp 1.0 - Relaxation Searching

Conceptual Indexing

Conceptual index consists of the following linguistic resources

tokens
lexicons
lexicons - domain specific
morphology
classification

The more of the linguistic resources built into an indexer the better the conceptual index. The best indexer
incorporate all of the above resources.

IMPORTANT: Although the core search engine in the reference implementation supports all these
concepts, the indexer (search builder) available in JavaHelp 1.0 only incorporates tokens. Details of the
other concepts are included below just for the interested reader.

The indexing engine can perform linguistic content processing of the indexed material to analyze the
structure and interrelationships of words and phrases and to organize all of the words and phrases from the
indexed material into a conceptual taxonomy that can be browsed and can be used to make connections
between terms in a query and related terms in the material that you’d like to find.

Morphological and Semantic Relationships

The relaxation ranking algorithm is a very effective retrieval method all by itself, but can produce
significantly improved results by using morphological and semantic relationships from the conceptual
taxonomy to automatically make connections between query terms and related terms that may occur in
desired passages.

Morphological relationships refer to relationships between different inflected and derived forms of a word,
such as the relationship between "renew" and "renewed" (past tense inflection) and "renew" and "renewal"
(derived nominalization). Derived and inflected forms of a word are treated as more specific terms in the
conceptual taxonomy, so that a request for "renew" will automatically match "renewed" and "renewal"
(with a small penalty).

Semantic relationships refer to relationships between terms that are more general or more specific than
other terms or that imply other terms. For example, "washing" is a kind of "cleaning" and since it is more
specific than "cleaning" it will automatically be matched by a request for "cleaning" (again with a small
penalty).

Passages with exact word matches are scored better than passages with morphological matches or matches
using semantic relationships.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 20:03:44 MDT 1999

72JavaHelp 1.0 - Relaxation Searching

JavaHelpTM 1.0
Proposed jar: Specification

Copyright 1998-1999 Sun Microsystems

NOTE: the main body of this document is taken verbatim from the original 1.2 proposal.

JAR URL Syntax Proposal

Summary

The following is a proposed URL syntax for representing JAR file entries. This new URL syntax can be
used to refer to resources stored in both local and remote JAR files, and also replaces the need for the
systemresource protocol handler.

Absolute URLs

An absolute JAR URL has the following syntax:

 abs-jar-url = "jar:" jar-file-url "!" [sub-jar-path] [entry-path]
 jar-file-url = abs-url (absolute URL of JAR file)
 sub-jar-path = entry-path "!" [sub-jar-path]
 entry-path = abs-path (absolute path of JAR file entry)

The optional component ’sub-jar-path’ can be used to refer to JAR files embedded within JAR files. If
’entry-path’ is omitted then it defaults to the root path entry ’/’.

Examples,

 jar:http://foo/foo.jar!/foo/bar/gif
 jar:http://foo/foo.jar!/baz.jar!/foo.gif

73JavaHelp 1.0 - Proposed jar: Specification

The seconds example refers to a JAR file ’baz.jar’ embedded within the JAR file at URL http://foo/foo.jar.

Since the ’!’ character has special meaning within a JAR URL then it must be encoded if appearing as the
last character in a JAR entry path or the embedded JAR file URL.

A JAR URL without any ’!’ character is equivalent to the URL obtained by removing ’jar’ scheme. For
example,

 jar:http://foo/foo.html -> http://foo.foo.html

This makes it possible for a relative URL to "jump out" of a JAR URL if necessary.

Relative URLs

When resolving relative URLs against an absolute JAR URL as the base URL, similar rules are employed
as with file URLs. The one exception is if the character ’!’ appears alone as a component of the relative
URL then it will cause every component following the last ’!’ to be removed from the absolute URL. This
makes it possible to immediately jump to the root of the last embedded JAR file.

For example, if the base URL is ’jar:http://foo/foo.jar!/foo/bar.html’ then the following relative URLs as
resolve as follows:

 baz.html -> jar:http://foo/foo.jar!/foo/baz.html
 !/../bar.jar!/ -> jar:http://foo/bar.jar!/
 !/../foo.gif -> jar:http://foo/foo.gif -> http://foo/foo.gif
 /bozo.html -> jar:http://foo/bozo.html -> http://foo/bozo.html

JDK1.2 support JAX files

With JDK1.2, the invocation of kiosks can be made even simpler through the use of the JAR
auto-invocation mechanism. The underlying platform’s process start-up mechanism distinguishes a class
file with a main() entry in the JAR file’s MANIFEST. Then the platform’s normal mechanism (double
click, explicit launch, magic number) is used to launch the file. A JAX file is a JAR file intented to be
used in this fashion with a different extension; this is useful with the standard win32 "launcher by
extension" mechanism.

JavaHelpTM 1.0
Send your comments to javahelp-comments@eng.sun.com
Last modified: Mon Apr 12 16:46:03 MDT 1999

74JavaHelp 1.0 - Proposed jar: Specification

JavaHelpTM 1.0 - Copyright

 Sun Microsystems, Inc.

Copyright 1998-1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
worldwide, limited license (without the right to sublicense) under SUN’s intellectual property rights that
are essential to practice the JavaHelp 1.0 Specification "Specification") to use the Specification for
internal evaluation purposes only. Other than this limited license, you acquire no right, title or interest in
or to the Specification and you shall have no right to use the Specification for productive or commercial
use.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR
227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
DERIVATIVES.

75JavaHelp 1.0 - Copyright

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JavaHelp, JDK, Java, HotJava, HotJava
Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing,
Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup
logo, and Visual Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Last modified: Mon Apr 12 16:20:07 MDT 1999

76JavaHelp 1.0 - Copyright

	JavaHelpTM 1.0 Specification
	
	RESTRICTED RIGHTS LEGEND
	TRADEMARKS

	Status of this Specification
	How to read this Specification
	Table of Contents of Specification
	Related Documents
	Further Reading
	Your Feedback

	 JavaHelpTM 1.0 - Overview
	Copyright 1998-1999 Sun Microsystems
	Introduction
	Features
	Serialization
	Supported Platforms
	The Specification
	API Structure
	Main Concepts
	HelpSet
	HelpSet File
	HelpBroker
	Help Views and Help Navigators
	Standard Help Views and Help Navigators
	Content files
	URL Protocols
	Map File
	Search
	Merging
	Extensibility
	Updating Help Information

	File Formats
	An Example

	 JavaHelpTM 1.0 - File Formats
	Copyright 1998-1999 Sun Microsystems
	Overview
	HelpSet File
	Format
	Processing Instructions
	HelpSet properties
	ID Map Section
	Map Example

	Navigational Views Section
	View Example

	SubHelpSet Section

	Map Files
	Table of Contents
	
	Table of Contents Example

	Index
	
	Index Example

	Help Content
	Search Database

	 JavaHelpTM 1.0 - Localization
	Copyright 1998-1999 Sun Microsystems
	A Network Environment
	Localized Documents
	Full Text Search
	More Details

	 JavaHelpTM 1.0 - Customization
	Copyright 1998-1999 Sun Microsystems
	Introduction
	Help Broker
	Content Viewers
	NavigatorView and JHelpNavigator
	View-Specific Knowledge
	Different Formats
	Different Presentations
	Two Examples of Custom Views

	Search Engines
	Key-Data Map
	Using new URL protocols

	 JavaHelpTM 1.0 - JavaBeans Help data
	Copyright 1998-1999 Sun Microsystems
	Introduction
	Help Information
	Mechanism
	An Example:
	Manifest and JAR File
	The HelpSet File
	The Help Map

	An Alternative Arrangement
	Manifest and JAR file
	The HelpSet File
	The Help Map

	 JavaHelpTM 1.0 - Context Sensitive Help
	Copyright 1998-1999 Sun Microsystems
	Context-Sensitive Help
	Defining the ID->URL map
	Assigning an ID to Each Visual Object
	Enabling a Help Action
	Help Support for JDialogs

	 JavaHelpTM 1.0 - Content Search
	Copyright 1998-1999 Sun Microsystems
	Search API
	Search Database Creation
	
	Stopwords

	ConfigFile Directives

	Search Database Use

	 JavaHelpTM 1.0 - Merge
	Copyright 1998-1999 Sun Microsystems
	Introduction
	The API
	Merging TOCs
	Merging Indices
	Merging Full-Text Search Databases

	 JavaHelpTM 1.0 - Change History
	Copyright 1998-1999 Sun Microsystems
	Changes from 0.90 to 1.0
	Changes from 0.70 to 0.90
	Changes from 0.50 to 0.70
	Changes from 0.33 to 0.50 †unpublished but implemented in jhEA2‡
	Changes from 0.30 to 0.33
	Changes from 0.20 to 0.30
	Changes from 0.10 to 0.20

	 JavaHelpTM 1.0 - JavaHelp Class Structure
	Copyright 1998-1999 Sun Microsystems
	Packages
	API Structure
	Basic Content Presentation
	Detailed Control and Access
	Extensibility
	Swing components
	Context Sensitive Help
	Search

	 JavaHelpTM 1.0 - Scenarios
	Copyright 1998-1999 Sun Microsystems
	Introduction
	Invocation Mechanisms
	Menus and Buttons
	Tooltips
	Context-Sensitive Help
	Helpers

	Presentation/Deployment Scenarios
	Information Kiosk
	Stand-Alone Application
	Network Application
	Embedded Help
	Component Help
	A Help Server
	Web Pages and Applets

	Search Scenarios
	Client-Side
	Server-Side
	Stand-Alone

	Packaging Scenarios
	Merge Scenarios

	 JavaHelpTM 1.0 JavaHelp System 1.0 Reference Implementation
	Copyright 1998-1999 Sun Microsystems
	JavaHelp System 1.0 Reference Implementation
	HelpBroker
	Search Engine
	Java Components in <OBJECT> Tag
	Launcher Application
	Packaging

	 JavaHelpTM 1.0 - Java Components
	Copyright 1998-1999 Sun Microsystems

	 JavaHelpTM 1.0 - Relaxation Searching
	Copyright 1998-1999 Sun Microsystems
	Introduction
	Relaxation Ranking
	Conceptual Indexing
	Morphological and Semantic Relationships

	 JavaHelpTM 1.0 Proposed jar: Specification
	Copyright 1998-1999 Sun Microsystems
	JAR URL Syntax Proposal
	Summary
	Absolute URLs
	Relative URLs
	JDK1.2 support JAX files

	 JavaHelpTM 1.0 - Copyright
	
	RESTRICTED RIGHTS LEGEND
	TRADEMARKS

