
1

CHAPTER 1

JSP by Example

Welcome to the JavaServer PagesTM technology, the cross-platform method of

generating dynamic content for the Web.

If you have reached this learn-by-example trail, you are probably new to the

technology. You might be a Web developer or enterprise developer who wants to use

JavaServer Pages to develop dynamic Web applications. The steps in this trail

contain a series of topics and sample code that teach you how to write JavaServer

Pages applications. Each step illustrates a group of related principles.

We recommend that you read the JSP Technical FAQ first and follow the instructions

for installing and configuring your JSP reference implementation. After that, start

with Tutorial 1 or jump ahead to any other tutorial, depending on what interests you.

Now turn to the first page, and let’s get started.

2 JavaServer Pages Developer’s Guide

The Very Beginning

So you want to get started developing JSP applications. FIGURE 1-1 shows what is

perhaps the simplest JSP application one could write. CODE EXAMPLE 1-1 and

CODE EXAMPLE 1-2 list its code.

FIGURE 1-1 Duke Says Hello

CODE EXAMPLE 1-1 The Duke Banner (dukebanner.html)

<table border="0" width="400" cellspacing="0"
cellpadding="0">

<tr>
<td height="150" width="150"> </td>
<td width="250"> </td>
</tr>

<tr>
<td width="150"> </td>
<td align="right" width="250">

 </td>
</tr>

</table>

JSP by Example 3

CODE EXAMPLE 1-2 The JSP Page (helloworld.jsp)

The Page Directive

The page directive is a JSP tag that you will use in almost every JSP source file you

write. In helloworld.jsp, it’s the line that looks like this:

<%@ page info="a hello world example" %>

The page directive gives instructions to the JSP engine that apply to the entire JSP

source file. In this example, page specifies an informative comment that will become

part of the compiled JSP file. In other cases, page might specify the scripting

language used in the JSP source file, packages the source file would import, or the

error page called if an error or exception occurs.

You can use the page directive anywhere in the JSP file, but it’s good coding style to

place it at the top of the file. Because it’s a JSP tag, you can even place it before the

opening <html> tag.

The Include Directive

The include directive inserts the contents of another file in the main JSP file, where

the directive is located. It’s useful for including copyright information, scripting

language files, or anything you might want to reuse in other applications. In this

example, the included file is an HTML table that creates a graphic banner.

<%@ page info="a hello world example" %>

<html>
<head><title>Hello, World</title></head>
<body bgcolor="#ffffff" background="background.gif">

<%@ include file="dukebanner.html" %>

<table>
<tr>
<td width=150> </td>
<td width=250 align=right> <h1>Hello, World!</h1> </td>
</tr>
</table>

</body>
</html>

4 JavaServer Pages Developer’s Guide

You can see the content of the included file by viewing the page source of the main

JSP file while you are running Hello, World. The included file does not contain

<html> or <body> tags, because these tags would conflict with the same tags in the

calling JSP file.

A Note About the JSP Tags

As you use the examples in this chapter, remember that the JSP tags are case

sensitive. If, for example, you type <jsp:usebean> instead of <jsp:useBean> ,

your tag will not be recognized, and the JSP 1.0 reference implementation will throw

an exception. Some of the attributes on the tags take class names, package names,

pathnames or other case-sensitive values as well.

If you have any doubts about the correct spelling or syntax of any JSP tag, see the

JavaServer Pages Syntax Card.

How To Run the Example

The instructions given here use a UNIX-style pathname. If you are working on

Windows, use the same pathname with the proper separator.

1 Create the directory (or folder) ../jswdk-1.0/examples/jsp/tutorial/
helloworld .

2 Place the following files in the ../tutorial/hello directory (or folder):

background.gif , duke.waving.gif , dukebanner.html , and helloworld.jsp .

3 From the command line, start the Sun JSP reference implementation:

cd ../jswdk-1.0
startserver

4 Open a Web browser and go to

http:// yourMachineName:8080/examples/jsp/tutorial/helloworld/
helloworld.jsp

JSP by Example 5

Handling HTML Forms

One of the most common parts of an electronic commerce application is an HTML

form in which a user enters some information. The information might be a

customer’s name and address, a word or phrase entered for a search engine, or a set

of preferences gathered as market research data.

What Happens to the Form Data

The information the user enters in the form is stored in the request object, which is

sent from the client to the JSP engine. What happens next?

FIGURE 1-2 represents how data flows between the client and the server (at least

when you use Sun’s JSP reference implementation; other JSP engines may work a

little differently).

FIGURE 1-2 How Data is Passed Between the Client and the Server

The JSP engine sends the request object to whatever server-side component

(JavaBeansTM component, servlet, or enterprise bean) the JSP file specifies. The

component handles the request, possibly retrieving data from a database or other

data store, and passes a response object back to the JSP engine. The JSP engine

passes the response object to the JSP page, where its data is formatted according

Component

response
request

Client

JSP Engine & Web Server

Component

request
request

JSP File

response

response

6 JavaServer Pages Developer’s Guide

the page’s HTML design. The JSP engine and Web server then send the revised JSP

page back to the client, where the user can view the results in the Web browser. The

communications protocol used between the client and server can be HTTP, or it can

be some other protocol.

The request and response objects are always implicitly available to you as you

author JSP source files. The request object is discussed in more detail later in this

tutorial.

How To Create a Form

You typically define an HTML form in a JSP source file, using JSP tags to pass data

between the form and some type of server-side object (usually a Bean). In general,

you do the following things in your JSP application:

1. Start writing a JSP source file, creating an HTML form and giving each form

element a name.

2. Write the Bean in a .java file, defining properties, get, and set methods that

correspond to the form element names (unless you want to set one property value

at a time explicitly).

3. Return to the JSP source file. Add a <jsp:useBean> tag to create or locate an

instance of the Bean.

4. Add a <jsp:setProperty> tag to set properties in the Bean from the HTML

form (the Bean needs a matching set method).

5. Add a <jsp:getProperty> tag to retrieve the data from the Bean (the Bean

needs a matching get method).

6. If you need to do even more processing on the user data, use the request object

from within a scriptlet.

JSP by Example 7

The Hello, User example will make these steps more clear.

A Simple Hello Application

The JSP application shown in FIGURE 1-3 is very simple. It continues the illustrious

computer science tradition know as Hello, World, but with a twist.

FIGURE 1-3 The User Enters a Name, and Then Duke Says Hello

Example Code

CODE EXAMPLE 1-3 The Duke Banner (dukebanner.html)

<table border="0" width="400" cellspacing="0"
cellpadding="0">

<tr>
<td height="150" width="150"> </td>
<td width="250"> </td>
</tr>
<tr>
<td width="150"> </td>
<td align="right" width="250">

 </td>
</tr>
</table>

8 JavaServer Pages Developer’s Guide

CODE EXAMPLE 1-4 The Main JSP File (hellouser.jsp)

<%@ page import="hello.NameHandler" %>

<jsp:useBean id="mybean" scope="page"
class="hello.NameHandler" />

<jsp:setProperty name="mybean" property="*" />

<html>
<head><title>Hello, User</title></head>
<body bgcolor="#ffffff" background="background.gif">

<%@ include file="dukebanner.html" %>

<table border="0" width="700">
<tr>
<td width="150"> </td>
<td width="550">
<h1>My name is Duke. What’s yours?</h1>
</td>
</tr>
<tr>
<td width="150" </td>
<td width="550">
<form method="get">
<input type="text" name="username" size="25">

<input type="submit" value="Submit">
<input type="reset" value="Reset">
</td>
</tr>
</form>
</table>

<%
if (request.getParameter("username") != null) {

%>

<%@ include file="response.jsp" %>

<%
}

%>

</body>
</html>

JSP by Example 9

CODE EXAMPLE 1-5 The Response File (response.jsp)

CODE EXAMPLE 1-6 The Bean That Handles the Form Data (namehandler.java)

Constructing the HTML Form

An HTML form has three main parts: the opening and closing <form> tags, the

input elements, and the Submit button that sends the data to the server. In an

ordinary HTML page, the opening <form> tag usually looks something like this:

<form method=get action= someURL>

<table border="0" width="700">
<tr>
<td width="150"> </td>

<td width="550">

<h1>Hello, <jsp:getProperty name="mybean"
property="username" />!

</h1>

</td>
</tr>
</table>

package hello;

public class NameHandler {

private String username;

public NameHandler() {
username = null;

}

public void setUsername(String name) {
username = name;

}

public String getUsername() {
return username;

}
}

10 JavaServer Pages Developer’s Guide

In other Web applications, the action attribute specifies a CGI script or other

program that will process the form data. In a JSP file, you can omit the action
attribute if you want the data processed by the object specified in the
<jsp:useBean> tag. You can also use action to specify another JSP file to which the

data should be sent.

The rest of the form is constructed just like a standard HTML form, with input

elements, a Submit button, and perhaps a Reset button. Be sure to give each input

element a name, like this:

<input type="text" name="username" >

Using the GET and POST Methods

The HTTP GET and POST methods send data to the server. In a JSP application, GET

and POST send data to the Bean, servlet, or other server-side component that is

handling the form data.

In theory, GET is for getting data from the server and POST is for sending data there.

However, GET appends the form data (called a query string) to an URL, in the form

of key/value pairs from the HTML form, for example, name=John . In the query

string, key/value pairs are separated by & characters, spaces are converted to +

characters, and special characters are converted to their hexadecimal equivalents.

Because the query string is in the URL, the page can be bookmarked or sent as email

with its query string. The query string is usually limited to a relatively small number

of characters.

The POST method, however, passes data of unlimited length as an HTTP request

body to the server. The user working in the client Web browser cannot see the data

that is being sent, so POST requests are ideal for sending confidential data (such as a

credit card number) or large amounts of data to the server.

Writing the Bean

If your JSP application uses a Bean, you can write the Bean according to the design

patterns outlined in the JavaBeans API Specification, remembering these general

points:

■ If you use a <jsp:getProperty> tag in your JSP source file, you need a

corresponding get method in the Bean.

■ If you use a <jsp:setProperty> tag in your JSP source file, you need one or

more corresponding set methods in the Bean.

Setting properties in and getting properties from a Bean is explained a bit more in

the next section.

JSP by Example 11

Getting Data From the Form to the Bean

Setting properties in a Bean from an HTML form is a two-part task:

■ Creating or locating the Bean instance with <jsp:useBean>

■ Setting property values in the Bean with <jsp:setProperty>

The first step is to instantiate or locate a Bean with a <jsp:useBean> tag before you

set property values in the Bean. In a JSP source file, the <jsp:useBean> tag must

appear above the <jsp:setProperty> tag. The <jsp:useBean> tag first looks for

a Bean instance with the name you specify, but if it doesn’t find the Bean, it

instantiates one. This allows you to create a Bean in one JSP file and use it in another,

as long as the Bean has a large enough scope.

The second step is to set property values in the Bean with a <jsp:setProperty>
tag. The easiest way to use <jsp:setProperty> is to define properties in the Bean

with names that match the names of the form elements. You would also define

corresponding set methods for each property. For example, if the form element is

named username , you would define a property username property and methods

getUsername and setUsername in the Bean.

If you use different names for the form element and the Bean property, you can still

set the property value with <jsp:setProperty> , but you can only set one value at

a time. For more information on the syntax variations of <jsp:setProperty> , see

the JavaServer Pages Syntax Card.

Checking the Request Object

The data the user enters is stored in the request object, which usually implements

javax.servlet.HttpServletRequest (or if your implementation uses a different

protocol, another interface that is subclassed from javax.servlet.
ServletRequest).

You can access the request object directly within a scriptlet. Scriptlets are discussed

in more detail in Tutorial 2, but for now it’s enough to know that they are fragments

of code written in a scripting language and placed within <%and %>characters. In

JSP 1.0, you must use the JavaTM programming language as your scripting language.

12 JavaServer Pages Developer’s Guide

You may find some of these methods useful with the request object:

You’ll find other methods as well, those defined in ServletRequest,
HttpServletRequest , or any subclass of ServletRequest that your implementation

uses.

The JSP engine always uses the request object behind the scenes, even if you do

not call it explicitly from a JSP file.

Getting Data from the Bean to the JSP Page

Once the user’s data has been sent to the Bean, you may want to retrieve the data

and display it in the JSP page. To do this, use the <jsp:getProperty> tag, giving

it the Bean name and property name:

<h1>Hello, <jsp:getProperty name="mybean" property="username"/>!

The Bean names you use on the <jsp:useBean> , <jsp:setProperty> , and

<jsp:getProperty> tags must match, for example:

hellouser.jsp:
<jsp:useBean id= "mybean" scope="session" class="hello.NameHandler" /
>
<jsp:setProperty name= "mybean" property="*" />

response.jsp:
<h1>Hello, <jsp:getProperty name= "mybean" property="username"/>!

In this example, the tags are in two files, but the Bean names still must match. If they

don’t, the Sun JSP reference implementation throws an error, possibly a fatal one.

The response the JSP engine returns to the client is encapsulated in the implicit

response object, which the JSP engine creates.

Method Defined In Job Performed

getRequest javax.servlet.jsp.PageContext Returns the current request object

getParameterNames javax.servlet.ServletRequest Returns the names of the parameters request
currently contains

getParameterValues javax.servlet.ServletRequest Returns the values of the parameters request
currently contains

getParameter javax.servlet.ServletRequest Returns the value of a parameter if you

provide the name

JSP by Example 13

How to Run the Example

The instructions given here use a UNIX-style pathname. If you are working on

Windows, use the same pathname with the proper separator.

▼ More Info

■ Using Beans in JSP Applications chapter

■ How the Java Transformation Takes Place section

1 Create the directory (or folder) ../jswdk-1.0/examples/jsp/tutorial/
hellouser .

2 Place the following files in the ../tutorial/hellouser directory: background.gif ,

duke.waving.gif , dukebanner.html , hellouser.jsp , and response.jsp .

3 Create the directory (or folder) ../jswdk-1.0/examples/WEB-INF/jsp/beans/
hello . Note that this directory is named hello , not hellouser .

4 Place the files NameHandler.java and NameHandler.class in the ../beans/hello
directory.

5 Start the Sun JSP reference implementation:

cd ../jswdk-1.0
startserver

6 Open a Web browser and go to

http:// yourMachineName:8080/examples/jsp/tutorial/hellouser/
hellouser.jsp

14 JavaServer Pages Developer’s Guide

Using Scripting Elements

At some point, you will probably want to add some good, old-fashioned program-

ming to your JSP files. The JSP tags are powerful and encapsulate tasks that would

be difficult or time-consuming to program. But even so, you will probably still want

to use scripting language fragments to supplement the JSP tags.

The scripting languages that are available to you depend on the JSP engine you are

using. With Sun’s JSP reference implementation, you must use the JavaTM

programming language for scripting, but other vendors’ JSP engines may include

support for other scripting languages).

How To Add Scripting

First, you’ll need to know a few general rules about adding scripting elements to a

JSP source file:

1. Use a page directive to define the scripting language used in the JSP page (unless

you are using the Java language, which is a default value).

2. The declaration syntax <%! .. %> declares variables or methods.

3. The expression syntax <%= .. %> defines a scripting language expression and

casts the result as a String .

4. The scriptlet syntax <% .. %> can handle declarations, expressions, or any other

type of code fragment valid in the page scripting language.

5. When you write a scriptlet, end the scriptlet with %>before you switch to HTML,

text, or another JSP tag.

The Difference Between <%, <%=, and <%!

Declarations, expressions, and scriptlets have similar syntax and usage, but also

some important differences. Let’s explore the similarities and differences here, with

some examples.

Declarations (between <%! and %>tags) contain one or more variable or method

declarations that end or are separated by semicolons:

<%! int i = 0; %>
<%! int a, b; double c; %>
<%! Circle a = new Circle(2.0); %>

JSP by Example 15

You must declare a variable or method in a JSP page before you use it in the page.

The scope of a declaration is usually a JSP file, but if the JSP file includes other files

with the include directive, the scope expands to cover the included files as well.

Expressions (between <%=and %>tags) can contain any language expression that is

valid in the page scripting language, but without a semicolon:

<%= Math.sqrt(2) %>
<%= items[i] %>
<%= a + b + c %>
<%= new java.util.Date() %>

The definition of a valid expression is up to the scripting language. When you use

the Java language for scripting, what’s between the expression tags can be any

expression defined in the Java Language Specification. The parts of the expression are

evaluated in left-to-right order. One key difference between expressions and

scriptlets (which are described next and appear between <%and %>tags) is that a

semicolon is not allowed within expression tags, even if the same expression

requires a semicolon when you use it within scriptlet tags.

Scriptlets (between <%and %>tags) allow you to write any number of valid

scripting language statements, like this:

<%
String name = null;
if (request.getParameter("name") == null) {

%>

Remember that in a scriptlet you must end a language statement with a semicolon if

the language requires it.

When you write a scriptlet, you can use any of the JSP implicit objects or classes

imported by the page directive, declared in a declaration, or named in a

<jsp:useBean> tag.

16 JavaServer Pages Developer’s Guide

The Number Guess Game

The Number Guess game is fun and makes good use of scriptlets and expressions, as

well as using the knowledge of HTML forms you gained in the last example.

FIGURE 1-4 About to Guess a Number

JSP by Example 17

Example Code

CODE EXAMPLE 1-7 Displaying the Number Guess Screen (numguess.jsp)

<!--
Number Guess Game
Written by Jason Hunter, CTO, K&A Software

jasonh@kasoftware.com, http://www.servlets.com
Copyright 1999, K&A Software
Distributed by Sun Microsystems with permission

-->

<%@ page import = "num.NumberGuessBean" %>

<jsp:useBean id="numguess" class="num.
NumberGuessBean" scope="session" />

<jsp:setProperty name="numguess" property="*" />

<html>
<head><title>Number Guess</title></head>
<body bgcolor="white">

<% if (numguess.getSuccess()) { %>

Congratulations! You got it.
And after just <%= numguess.getNumGuesses() %>
tries.<p>

<% numguess.reset(); %>
Care to try again?

<% } else if (numguess.getNumGuesses() == 0) { %>

Welcome to the Number Guess game.<p>
I’m thinking of a number between 1 and 100.<p>

<form method=get>
What’s your guess? <input type=text name=guess>
<input type=submit value="Submit">
</form>

<% } else { %>

Good guess, but nope. Try <%= numguess.
getHint() %> .
You have made <%= numguess.getNumGuesses() %>
guesses.<p>

18 JavaServer Pages Developer’s Guide

I’m thinking of a number between 1 and 100.<p>

<form method=get>
What’s your guess? <input type=text name=guess>
<input type=submit value="Submit">
</form>

<% } %>

</body>
</html>

JSP by Example 19

CODE EXAMPLE 1-8 Handling the Guess (NumberGuessBean.java)

// Number Guess Game
// Written by Jason Hunter, CTO, K&A Software
// jasonh@kasoftware.com, http://www.servlets.com
// Copyright 1999, K&A Software
// Distributed by Sun Microsystems with permission

package num;

import java.util.*;
public class NumberGuessBean {

int answer;
boolean success;
String hint;
int numGuesses;

public NumberGuessBean() {
reset();

}

public void setGuess(String guess) {
numGuesses++;

int g;
try {
g = Integer.parseInt(guess);
}
catch (NumberFormatException e) {

g = -1;
}
if (g == answer) {

success = true;
}
else if (g == -1) {

hint = "a number next time";
}
else if (g < answer) {

hint = "higher";
}
else if (g > answer) {

hint = "lower";
}

}
public boolean getSuccess() {

return success;
}

20 JavaServer Pages Developer’s Guide

Using Scripting Elements in a JSP File

The file numguess.jsp is an interesting example of the use of scripting elements,

because it is structured as you might structure a source file, with a large

if ... else statement within scriptlet tags. The difference is that the body of each

statement clause is written in HTML and JSP tags, rather than in a programming

language.

You are not required to write scriptlets mingled with HTML and JSP tags, as shown

in numguess.jsp . Between the <%and %>tags, you can write as many lines of

scripting language code as you want. In general, doing less processing in scriptlets

and more in components like servlets or Beans makes your application code more

reusable and portable. Nonetheless, how you write your JSP application is your

choice, and Sun’s JSP 1.0 reference implementation specifies no limit on the length of

a scriptlet.

Mingling Scripting Elements with Tags

When you mingle scripting elements with HTML and JSP tags, you must always end

a scripting element before you start using tags and then reopen the scripting element

afterwards, like this:

public String getHint() {
return "" + hint;

}

public int getNumGuesses() {
return numGuesses;

}

public void reset() {
answer = Math.abs(new Random().nextInt() % 100)

+ 1;
success = false;
numGuesses = 0;

}
}

JSP by Example 21

<% } else { %> <!-- closing the scriptlet before the tags start -->

... tags follow ...

<% } %> <!-- reopening the scriptlet to close the language block -->

At first, this may look a bit strange, but it ensures that the scripting elements are

transformed correctly when the JSP source file is compiled.

When Are the Scripting Elements Executed?

A JSP source file is processed in two stages—HTTP translation time and request
processing time.

At HTTP translation time, which occurs when a user first loads a JSP page, the JSP

source file is compiled to a Java class, usually a Java servlet. The HTML tags and as

many JSP tags as possible are processed at this stage, before the user makes a

request.

Request processing time occurs when your user clicks in the JSP page to make a

request. The request is sent from the client to the server by way of the request
object. The JSP engine then executes the compiled JSP file, or servlet, using the

request values the user submitted.

When you use scripting elements in a JSP file, you should know when they are

evaluated. Declarations are processed at HTTP translation time and are available to

other declarations, expressions, and scriptlets in the compiled JSP file. Expressions

are also evaluated at HTTP translation time. The value of each expression is

converted to a String and inserted in place in the compiled JSP file. Scriptlets,

however, are evaluated at request processing time, using the values of any

declarations and expressions that are made available to them.

How To Run the Example

The instructions given here use a UNIX-style pathname. If you are working on

Windows, use the same pathname with the proper separator.

1 The Number Guess example is already installed in the JSP reference implementation.

2 The .jsp and .html files are in the directory ../jswdk-1.0/examples/jsp/num .

3 The .java and .class files are in the directory ../jswdk-1.0/examples/WEB-INF/
jsp/beans/num .

4 Open a Web browser and go to

http://yourMachineName/examples/jsp/num/numguess.jsp .

22 JavaServer Pages Developer’s Guide

Handling Exceptions

What was happening the last time you used a JSP application and you entered

something incorrectly? If the application was well written, it probably threw an

exception and displayed an error page. Exceptions that occur while a JSP application

is running are called runtime exceptions and are described in this tutorial.

Just as in a Java application, an exception is an object that is an instance of java.
lang.Throwable or one of its subclasses. Throwable has two standard

subclasses—java.lang.Exception, which describes exceptions, and java.
lang.Error , which describes errors.

Errors are different from exceptions. Errors usually indicate linkage or virtual ma-

chine problems that your Web application probably won’t recover from, such as run-

ning out of memory. Exceptions, however, are conditions that can be caught and

recovered from. These exceptions might be, for example, a NullPointerExcep-
tion or a ClassCastException , which tell you that a null value or a value of the

wrong data type has been passed to your application while it is running.

Runtime exceptions are easy to handle in a JSP application, because they are stored

one at a time in the implicit object named exception . You can use the exception
object in a special type of JSP page called an error page, where you display the

exception’s name and class, its stack trace, and an informative message for your

user.

A runtime exception is thrown by the compiled JSP file, the Java class file that

contains the translated version of your JSP page. This means that your application

has already been compiled and translated correctly. (Exceptions that occur while a

file is being compiled or translated are not stored in the exception object and have

their messages displayed in the command window, rather than in error pages. These

are not the type of exception described in this tutorial.)

This tutorial describes how to create a simple JSP application with several display

pages, a JavaBeans component, and one error page that gives informative error

messages to the user. In this example, the Bean tracks which JSP page the user was

working in when the exception was thrown, which gives you, the developer,

valuable information so that you can display an informative message. This is a

simple error tracking mechanism; we will describe more complex ones later in this

book.

JSP by Example 23

How To Add Error Pages

Even though we call them error pages, the specialized JSP pages we describe here

actually display information about exceptions. To add error pages that display

exception information to a Web application, follow these steps:

1. Write your Bean (or enterprise bean, servlet, or other component) so that it throws

certain exceptions under certain conditions.

2. Use a simple tracking mechanism in your component to help you gather

information about what your user was doing when the exception was thrown.

(If you move into developing J2EE applications, your application will be able to

save state, which is a better way of providing information. This is described later

in this book.)

3. In the JSP file, use a page directive with errorPage set to the name of a JSP file

that will display a message to the user when an exception occurs.

4. Write an error page file, using a page directive with isErrorPage="true" .

5. In the error page file, use the exception object to get information about the

exception.

6. Use informative messages, either in your error page file or included from other

files, to give your user an informative message relevant to what he or she was

doing when the exception was thrown.

An Email Address Finder Example

This example, named email, stores names and email addresses in a map file based on

the java.util.TreeMap class defined in the JDK 1.2. The TreeMap class creates a

data structure called a red-black tree. In the tree, data is stored with a key and a

value. In this example, the name is the key and the email address is the value.

When you add an entry to the map file, you enter both a name (the key) and an

email address (the value). You can look up or delete an email address by entering

just a name. The name cannot be null because it is a key. If a user tries to enter a null

name, the application throws an exception and displays an error page.

24 JavaServer Pages Developer’s Guide

So What’s a Red-Black Tree?

For those of you who are curious about algorithms, a red-black tree is an extended
binary tree that looks something like this (conceptually, at least):

If you are viewing this document online, you will see that some nodes are red and

some are black. If you are viewing this document in print, the red nodes look a

shade or two lighter than the black.

The red-black tree has nodes that are either leaf nodes or branch nodes. Leaf nodes

are the small nodes at the end of a line, while branch nodes are the larger nodes that

connect two or more lines. Data is stored in a balanced structure in the tree, using

the following conditions:

■ Every node has two children or is a leaf.

■ Every node is colored red or black.

■ Every leaf node is colored black.

■ If a node is red, then both of its children are black.

■ Every path from the root to a leaf contains the same number of black nodes.

If you want more detail on how a tree map works, you can find it in Introduction to
Algorithms by Corman, Leiserson, and Rivest. The advantage of a tree map for you,

the Web developer, is that you can create a map file that stores data in ascending

order (sorted by keys) and that has fast search times.

How the Example Is Structured

The email example has three pages with HTML forms, two response files, one error

page, and one JavaBeans component. You can visualize the file structure as

something like this:

JSP by Example 25

■ Map.java is a JavaBeans component that creates the map file.

■ email.jsp is a JSP page that displays a form where the user enters a name and

email address.

■ lookup.jsp is a JSP page that lets a user search for an email address that

matches a name.

■ lookupresponse.jsp is included in lookup.jsp and displays the entry the

user wants to look up.

■ delete.jsp is a JSP page that lets the user delete an email address that matches

a name.

■ deleteresponse.jsp is included in delete.jsp and displays the entry that

was deleted from the map file.

■ error.jsp is an error page that displays information about handling exceptions

that occur while adding, looking up, or deleting entries in the map file.

The sample code for email is shown in CODE EXAMPLE 1-9 through

CODE EXAMPLE 1-15, along with miniature versions of its screens. You may want to

install and run the example while you look at the sample code. The instructions are

in “How To Run the Example” at the end of this tutorial.

email.jsp

lookup.jsp

delete.jsp

error.jsp

lookupresponse.jsp

deleteresponse.jsp

Map.java

26 JavaServer Pages Developer’s Guide

CODE EXAMPLE 1-9 Adding a Name and Email Address (email.jsp)

<%@ include file="copyright.html" %>

<%@ page isThreadSafe="false" import="java.util.*, email.Map"
errorPage="error.jsp" %>

<jsp:useBean id="mymap" scope="session" class="email.Map" />
<jsp:setProperty name="mymap" property="name" param="name" />
<jsp:setProperty name="mymap" property="email" param="email" />

<% mymap.setAction("add"); %>

<html>
<head><title>Email Finder</title></head>
<body bgcolor="#ffffff" background="background.gif" link="#000099">

<!-- the form table -->

<form method="get">
<table border="0" cellspacing="0"

cellpadding="5">

<tr>
<td width="120"> </td>
<td align="right">
<h1>Email Finder</h1> </td>
</tr>

<tr>
<td width="120" align="right">Name</td>
<td align="left"><input type="text" name="name" size="35"></td>
</tr>

<tr>
<td width="120" align="right">Email Address</td>
<td align="left"><input type="text" name="email" size="35"></td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
Please enter a name and an email address.
</td>
</tr>

JSP by Example 27

<tr>
<td width="120"> </td>
<td align="right">
<input type="submit" value="Add">
</td>
</tr>

<!-- here we call the put method to add the
name and email address to the map file -->

<%
String rname = request.getParameter("name");
String remail = request.getParameter("email");
if (rname != null) {

mymap.put(rname, remail);
}

%>

<tr>
<td width="120"> </td>
<td align="right">
The map file has <%= mymap.size() %>
 entries.

</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
Lookup |

Delete
</td>
</tr>

</table>
</form>

</body>
</html>

28 JavaServer Pages Developer’s Guide

CODE EXAMPLE 1-10 Looking Up a Name in the Map File (lookup.jsp)

<%@ include file="copyright.html" %>

<%@ page isThreadSafe="false" import="java.util.*, email.Map"
errorPage="error.jsp" %>

<jsp:useBean id="mymap" scope="session" class="email.Map" />
<jsp:setProperty name="mymap" property="name" param="name" />

<% mymap.setAction("lookup"); %>

<html>
<head><title> Email Finder </title></head>
<body bgcolor="#ffffff" background="background.gif" link="#000099">

<form method="get">
<table border="0" cellspacing="0" cellpadding="5">

<tr>
<td width="120"> </td>
<td align="right">
<h1>Email Finder</h1> </td>
</tr>

<tr>
<td width="120" align="right">

Name</td>
<td align="left">
<input type="text" name="name"

size="35"></td> </tr>

<tr>
<td width="120"> </td>
<td align="right">
Please enter a name for which

you’d like an email address.
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
The map file has <%= mymap.size() %>
entries.
</td>
</tr>

JSP by Example 29

<tr>
<td width="120"> </td>
<td align="right"> <input type="submit" value="Lookup"> </td>
</tr>

<% if (request.getParameter("name") != null) { %>
<%@ include file="lookupresponse.jsp" %>

<% } %>

<tr>
<td width="120"> </td>
<td align="right">
Add |

Delete
</td>
</tr>
</table>

</body>
</html>

30 JavaServer Pages Developer’s Guide

CODE EXAMPLE 1-11 Displaying the Lookup Response (lookupresponse.jsp)

<%@ page import="java.util.*,
email.Map" %>

<tr>
<td width="120"> </td>
<td align="right">
 Success!
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
<jsp:getProperty name="mymap" property="name" />

<jsp:getProperty name="mymap" property="email" />
</td>
</tr>

JSP by Example 31

CODE EXAMPLE 1-12 Deleting an Email Address (delete.jsp)

<%@ include file="copyright.html" %>

<%@ page isThreadSafe="false" import="java.util.*, email.Map"
errorPage="error.jsp" %>

<jsp:useBean id="mymap" scope="session" class="email.Map" />
<jsp:setProperty name="mymap" property="name" param="name" />

<!-- tags the JSP page so that we can display
the right exception message later -->

<% mymap.setAction("delete"); %>

<html>
<head><title> Email Finder </title></head>
<body bgcolor="#ffffff" background="background.gif" link="#000099">

<form method="get">
<table border="0" cellspacing="0"

cellpadding="5">

<tr>
<td width="120"> </td>
<td align="right">
<h1>Email Finder</h1> </td>
</tr>

<tr>
<td width="120" align="right">Name</td>
<td align="left"> <input type="text" name="name" size="35"> </td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
Please enter a name you would like to delete.
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
The map file has <%= mymap.size() %>
entries.

32 JavaServer Pages Developer’s Guide

</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right"> <input type="submit" value="Delete"> </td>
</tr>

<!-- display the name and email address, then
delete them from the map file -->

<% if (request.getParameter("name") != null) { %>
<%@ include file="deleteresponse.jsp" %>

<%
mymap.remove(request.getParameter("name")) ;

}
%>

<tr>
<td width="120"> </td>
<td align="right">
Add |

Lookup
</td>
</tr>

</table>
</body>
</html>

JSP by Example 33

CODE EXAMPLE 1-13 Displaying the Delete Response (deleteresponse.jsp)

<%@ page import="java.util.*,
email.Map" %>

<tr>
<td width="120">
</td>
<td align="right"> Success!
</td>
</tr>

<tr>
<td width="120"> </td>
<td align="right">
<jsp:getProperty name="mymap" property="name" />

<jsp:getProperty name="mymap" property="email" />

<p>
has been deleted from the map file.
</td>
</tr>

34 JavaServer Pages Developer’s Guide

CODE EXAMPLE 1-14 Displaying Exception Messages (error.jsp)

<%@ include file="copyright.html" %>

<%@ page isErrorPage="true" import="java.util.*, email.Map" %>
<jsp:useBean id="mymap" scope="session" class="email.Map" />

<html>
<head><title>Email Finder</title></head>
<body bgcolor="#ffffff" background="background.gif" link="#000099">

<table border="0" cellspacing="0" cellpadding="5">
<tr>
<td width="150" align="right"> </td>
<td align="right" valign="bottom"> <h1> Email Finder </h1> </td>
</tr>

<tr>
<td width="150" align="right"> </td>
<td align="right"> Oops! an exception occurred. </td>
</tr>

<tr>
<td width="150" align="right">

 </td>
<td align="right">

The name of the exception is
<%= exception.toString() %>.

</td>
</tr>

<tr>
<td width="150" align="right"> </td>
<td align="right"> </td>
</tr>

<% if (mymap.getAction() == "delete") { %>
<tr>
<td width=150 align=right> </td>
<td align=right>
This means that ...
<p>The entry you were trying to
delete is not in the map file

<i>or</i>

JSP by Example 35

you did not enter a name to delete.
<p>
Want to try again?
</td>
</tr>

<% }

else if (mymap.getAction() == "lookup") { %>
<tr>
<td width="150" align="right"> </td>
<td align="right">
<i>This means that ...</i>
<p>the entry you were trying to
look up
is not in the map file, <i>or</i>

you did not enter a name to look up.
<p>
Want to try again?
</td>
</tr>

<% }

else if (mymap.getAction() == "add") { %>
<tr>
<td width="150" align="right"> </td>
<td align="right">
<i>This means that ...</i>
<p>You were trying to add
an entry with a name of null.

The map file doesn’t allow this.
<p>
Want to try again?
</td>
</tr>

<% } %>

</table>

36 JavaServer Pages Developer’s Guide

CODE EXAMPLE 1-15 Creating the Map File (Map.java)

package email;
import java.util.*;

public class Map extends TreeMap {

// In this treemap, name is the key and email is the value

private String name, email, action;
private int count = 0;

public Map() { }

public void setName(String formName) {
if (formName != "") {

name = formName;
}

}

public String getName()
return name;

}

public void setEmail(String formEmail) {
if (formEmail != "") {

email = formEmail;
System.out.println(name); // for debugging only
System.out.println(email); // for debugging only

}
}

public String getEmail() {
email = get(name).toString();
return email;

}

public void setAction(String pageAction) {
action = pageAction;

}

public String getAction() {
return action;

}

}

JSP by Example 37

Handling Exceptions in the Bean

In this example, the code that throws exceptions is in the TreeMap class, which our

email.Map Bean extends, so we won’t need to write code that throws exceptions in

the Bean.

The methods that we use from TreeMap are shown below, with their exceptions:

■ public Object get(Object key)
throws ClassCastException, NullPointerException
- retrieves an entry from the map file

■ public Object put(Object key, Object value)
throws ClassCastException, NullPointerException
- adds an entry to the map file

■ public Object remove(Object key)
throws ClassCastException, NullPointerException
- removes an entry from the map file

■ int size()
- returns the number of entries in the map file

Of course, if you need more information about these methods, you can find it in the

Javadoc API reference for java.util.TreeMap .

The TreeMap class throws a ClassCastException when the user tries to enter

data of the wrong type in the map file, for example, an int where the map file is

expecting a String . Keep in mind that the TreeMap class is also used with Java

client applications. In our JSP application, this exception won’t occur, because the

user enters a name and an email address in an HTML form, which always passes

data as strings to the Bean. Even if the user typed 6 as a name, the value is still sent

as a String .

However, the get , put , and remove methods throw a NullPointerException if

the user enters nothing and a null value is passed to the Bean. This is the most

common exception that the email application needs to handle. This exception might

occur while your user is trying to add, look up, or remove an entry from the map

file. Remember that the key (in this case, the name) cannot be null.

When the User Tries to Add a Null Value

The first case, where the user attempts to add a null name or email address, is

handled by some simple code in the Bean and in email.jsp . (Here null means the

user has entered nothing in the form text box. It does not handle the case where the

user enters one or more blank spaces, then presses Return.)

The code that handles adding null values is in the setName and setEmail methods

of Map.java and in a scriptlet in email.jsp (CODE EXAMPLE 1-16):

38 JavaServer Pages Developer’s Guide

CODE EXAMPLE 1-16 Catching a Null Value on Add

Map.java:

public void setName(String formName) {
if (formName != "") {

name = formName;
}

}

public void setEmail(String formEmail) {
if (formEmail != "") {

email = formEmail;
System.out.println(name); // for debugging only
System.out.println(email); // for debugging only

}
}

email.jsp:

<%
String rname = request.getParameter("name");
String remail = request.getParameter("email");
if (rname != null) {

mymap.put(rname, remail);
}

%>

Both setName and setEmail check whether the user has entered a null value in the

form before setting their respective properties. If the form value is null, the Bean

does not set a property, the put method does not add a value to the map file, and no

exception is thrown.

When the User Tries to Look Up a Null Value

But if you go to the Lookup or Delete page of the example and try to look up or delete

an entry that isn’t in the map file at all, the email application throws a

NullPointerException and displays the error page. The code that handles

looking up null values is shown in CODE EXAMPLE 1-17.

CODE EXAMPLE 1-17 Catching a Null Value on Look Up

lookup.jsp:

<% if (request.getParameter("name") != null) { %>
<%@ include file="lookupresponse.jsp" %>

<% } %>

lookupresponse.jsp:
<tr>
<td width="120"> </td>

JSP by Example 39

<td align="right">

<jsp:getProperty name="mymap" property="name" />

<jsp:getProperty name="mymap" property="email" />

</td>
</tr>

This example has two pieces of code that work together. The page lookup.jsp ,

where you enter a name you want to look up in the map file, has a scriptlet that

checks whether or not the user has entered a name in the form. If the user doesn’t

enter a name, or enters a name that doesn’t exist in the map file, the Bean throws a

NullPointerException and the application displays the error page—which is the

desired behavior! In this case, you can be happy that the error page is displayed.

You may have noticed that the lines from lookupresponse.jsp use the

<jsp:getProperty> tag to retrieve the name and email address from the Bean.

You could also try to retrieve the email address using expressions, something like

this:

<%= request.getParameter("name") %>

<%= mymap.get(request.getParameter("name")) %>

If you use these lines, the application would behave a little differently. Rather than

throwing a NullPointerException and displaying an error page, it would

display the name the user entered, with the word null below it in the JSP page. In

Sun’s JSP reference implementation, the <jsp:getProperty> tag intentionally

handles null values differently than scriptlets or expressions. The way null values

are handled will vary according to the JSP engine you use.

When the User Tries to Delete a Null Value

Handling the case of a user trying to delete a null value is very similar to handling

the lookup of a null value. The code that handles null values that occur while you

are trying to delete an entry is shown in CODE EXAMPLE 1-18.

CODE EXAMPLE 1-18 Catching a Null Value on Delete

delete.jsp:

<% if (request.getParameter("name") != null) { %>
<%@ include file="deleteresponse.jsp" %>

<%

40 JavaServer Pages Developer’s Guide

mymap.remove(request.getParameter("name")) ;
}

%>

deleteresponse.jsp:

<tr>
<td width="120"> </td>
<td align="right">

<jsp:getProperty name="mymap" property="name" />

<jsp:getProperty name="mymap" property="email" />

<p>
has been deleted from the map file.

</td>
</tr>

Calling an Error Page From Another Page

To link the display pages to the error page, each display page in the email application

uses a page directive with the errorPage attribute, like this:

<%@ page isThreadSafe="false" import="java.util.*, email.Map"
errorPage="error.jsp" %>

In the code examples, the files that use this directive are email.jsp , lookup.jsp ,

and delete.jsp . You can only specify one error page for each JSP page.

This means that you can design a JSP application so that each JSP page calls a

different error page, or so that several JSP pages call one error page. In the email

application, several JSP pages call one error page, as it simplifies the number of files

you need to maintain for one application. In designing your applications, the choice

is up to you.

You should always use at least one error page in a JSP application. If you don’t

specify an error page, the exception message and stack trace are displayed in the

command window from which the JSP engine was started, while the Web browser

displays a non-informative HTTP error message, for example, a 404 or 501 message.

This is definitely not a graceful way to handle exceptions.

JSP by Example 41

Writing an Error Page

An error page is different from an ordinary JSP page. In an error page, you must

explicitly set the isErrorPage attribute of the page directive to true . You also

have access to the exception object, which gives you information about the

exception.

First, let’s look at an example of the page directive for an error page:

<%@ page isErrorPage="true" import="java.util.*, email.Map" %>

Once you have set isErrorPage to true , you can use the exception object.

exception is of type java.lang.Throwable , so you can use any of the methods

defined in Throwable with exception in a scriptlet or expression, for example:

■ <%= exception.toString() %>

■ <% exception.printStackTrace(); %>

The expression exception.toString() displays the exception’s class name, for

example, java.lang.NullPointerException , while exception.
printStackTrace() displays the exception’s stack trace. The class name and stack

trace are probably very helpful to you the developer, but probably not very helpful

to your user. To get around this, you may want to write some type of tracking

mechanism to provide information that helps you give an informative message to

your user.

Writing a Simple Tracking Mechanism

The email example uses a property named action in Map.java to track which page

the user was working in when the exception was thrown. That gives you valuable

information to help you write an informative error message for your user. The Bean

has a variable named action , a getAction method, and a setAction method.

The variable and method declarations in the Bean look like this:

private String action ;

public void setAction (String pageAction) {
action = pageAction;

}

public String getAction() {
return action;

}

Each of the pages email.jsp , lookup.jsp , and delete.jsp sets the value of

action with a line like this one (which comes from email.jsp):

<% mymap.setAction("add"); %>

42 JavaServer Pages Developer’s Guide

If an exception occurs, error.jsp checks the value of action and includes an

appropriate message for each value, using lines like these:

<% if (mymap.getAction() == "delete") { %>
.. text message here ..
else if (mymap.getAction() == "lookup") { %>
.. text message here ..
else if (mymap.getAction() == "add") { %>
.. text message here ..
<% } %>

Of course, this is a very simple way to implement tracking. If you move into

developing J2EE applications with enterprise beans, you can write applications that

save state. That is more advanced and is discussed later in this book.

How To Run the Example

In order to run this example, you need to have already installed the JDK 1.2 (if you

haven’t done so, see http://java.sun.com/products/OV_jdkProduct.html.)

The pathnames given here are for UNIX systems. If you are using Windows, use the

same pathnames, with the path separators reversed.

1 Create the directory (or folder) ../jswdk-1.0/examples/jsp/tutorial/email .

2 Place the following files in the ../tutorial/email directory: background.gif ,

delete.jsp , deleteresponse.jsp , email.jsp , error.jsp , lookup.jsp ,

lookupresponse.jsp .

3 Create the directory (or folder) ../jswdk-1.0/examples/WEB-INF/jsp/beans/
email .

4 Place the files Map.class and Map.java in the ../beans/email directory.

5 Start the Sun JSP reference implementation:

cd ../jswdk-1.0
startserver

6 Open a Web browser and go to

http:// yourMachineName:8080/examples/jsp/tutorial/email/email.jsp

	1
	JSP by Example
	The Very Beginning
	Handling HTML Forms
	Using Scripting Elements
	Handling Exceptions

